

3AH5 Vacuum Circuit-Breakers

Medium-Voltage Equipment Selection and Ordering Data

Catalog HG 11.05 · 2007

SIEMENS

3AH5 Vacuum Circuit-Breakers

Medium-Voltage Equipment Catalog HG 11.05 · 2007

Invalid:

Catalog HG 11.11 \cdot 1999, Part 4 and Catalog HG 11.12 \cdot 2005, Part 4

Contents

Page

5

6

7

9

10

Description General Construction and mode of operation, standards Ambient conditions, current carrying capacity

and dielectric strength Product range overview and basic equipment

Equipment Selection	11
Ordering data and configuration example	12
Selection of basic types, circuit-breakers	13
Selection of secondary equipment	15
Additional equipment	20
Accessories and spare parts	21

Technical Data	25
Electrical data, dimensions and weights	26
Operating times, short-circuit protection of motors, consumption data of releases	31
Circuit diagrams	32

Annex	33
Inquiry form	34
Configuration instructions	35
Configuration aid	Foldout page

© Siemens AG 2007

2

Page

5

Industrial application: Refinery

Contents

Description

General	6
Construction and mode of operation:	
Pole assemblies	7
Operating mechanism box	7
Operating mechanism	7
Trip-free mechanism	7
Releases	8
Closing	8
Interlocking	8
Standards	5
Ambient conditions	ç
Current carrying capacity	ç
Dielectric strength	ç
Product range overview and basic equipment	10

3AH5 vacuum circuit-breaker from 12 to 36 kV – The Economical

R-HG11-201.eps

3AH5 vacuum circuit-breakers control all switching duties in medium-voltage systems. They are applicable for operation of e.g. overhead lines, cables, transformers, genera-

3AH5 - the universal circuit-breaker in the product range

tors, capacitors, filter circuits, motors and reactors. Here, small short-circuit ratings in distribution systems face high breaking currents in industrial systems.

R-HG11-185.eps

The 3AH5 vacuum circuit-breaker is a real all-round device in its field of application. With its compact dimensions, it fits in all customary switchgear types. The comprehensive variety of types with different normal currents and short-circuit currents as well as various pole-center distances for voltage levels from 12 kV to 36 kV enables its universal application for all medium-voltage requirements.

6 Siemens HG 11.05 · 2007 The 3AH5 vacuum circuit-breaker consists of the pole assemblies (1) and the operating mechanism box (2). The pole assemblies are fixed to the operating mechanism box via post insulators (3). The switching movement is transferred by means of operating rods (4) and levers.

Pole assemblies

The pole assemblies consist of the vacuum interrupters (5) and the interrupter supports. The vacuum interrupters are air-insulated and freely accessible. This makes it possible to clean the insulating parts easily in adverse ambient conditions. The vacuum interrupter is rigidly fixed to the upper interrupter support (6). The lower part of the interrupter is quided in the lower interrupter support (7), allowing axial movement. The braces (8) absorb the external forces resulting from switching operations and the contact pressure.

Operating mechanism box

The whole operating mechanism with releases, auxiliary switches, indicators and actuating devices is accommodated in the operating mechanism box.

The extent of the secondary equipment depends on the case of application and offers a multiple variety of options in order to meet almost every requirement.

Operating mechanism

For circuit-breaker operation, both spring-operated and stored-energy mechanisms are available. With manual spring-operated mechanisms, the closing process takes place automatically after manual charging of the closing spring. The opening or contact springs are charged simultaneously during the closing operation, which means that a storedenergy mechanism is available for the opening operation.

With motor or manual operating stored-energy mechanisms, the closing spring is either charged electrically or manually. It latches tight at the end of the charging process and serves as an energy store.

To close the breaker, the closing spring can be unlatched either mechanically by means of the local "ON" pushbutton or electrically by remote control. The closing spring charges the opening or contact pressure springs as the breaker closes. The now discharged closing spring will be charged again automatically by the mechanism motor or manually. Then the operating sequence OPEN-CLOSE-OPEN is stored in the springs.

Trip-free mechanism

3AH5 vacuum circuit-breakers have a trip-free mechanism according to IEC 62271-100. In the event of an opening command being given after a closing operation has been initiated, the moving contacts return to the open position and remain there even if the closing command is sustained. This means that the contacts of the vacuum circuit-breakers are momentarily in the closed position, which is permissible according to IEC 62271-100.

Circuit-breaker structure

- 1 Pole assembly
- 2 Operating mechanism box
- 3 Post insulator
- 4 Operating rod
- 5 Vacuum interrupter
- 6 Upper interrupter support
- 7 Lower interrupter support

Open operating mechanism box

Releases

A release is a device which transfers commands from an external source, such as a control room, to the latching mechanism of the vacuum circuit-breaker so that it can be opened or closed. The maximum possible equipment is one shunt release and another release to be selected at will. For release combinations, refer to page 15.

• <u>The closing solenoid</u> unlatches the charged closing spring of the vacuum circuit-breaker, closing it by electrical means.

• <u>Shunt releases</u> are used for automatic tripping of vacuum circuit-breakers by suitable protection relays and for deliberate tripping by electrical means. They are intended for connection to an external power supply (DC or AC voltage) but, in special cases, may also be connected to a voltage transformer for manual operation.

• <u>Current-transformer operated releases</u> comprise a storedenergy mechanism, an unlatching mechanism and an electromagnetic system. They are used when there is no external source of auxiliary power (e.g. a battery). Tripping is effected by means of a protection relay (e.g. overcurrenttime protection) acting on the current-transformer operated release.

• <u>Undervoltage releases</u> comprise a stored-energy mechanism, an unlatching mechanism and an electromagnetic system which is permanently connected to the secondary or auxiliary voltage while the vacuum circuit-breaker is closed. If the voltage falls below a predetermined value, unlatching of the release is enabled and the circuit-breaker is opened via the stored-energy mechanism. The deliberate tripping of the undervoltage release generally takes place via an NC contact in the tripping circuit or via an NO contact by shortcircuiting the magnet coil. With this type of tripping, the short-circuit current is limited by the built-in resistors.

Undervoltage releases can also be connected to voltage transformers. When the operating voltage drops to impermissibly low levels, the circuit-breaker is tripped automatically.

For delayed tripping, the undervoltage release can be combined with energy stores.

Closing

In the standard version of the stored-energy mechanisms, 3AH5 vacuum circuit-breakers can be remote-closed electrically. They can also be closed locally by mechanical unlatching of the closing spring via pushbutton. With springoperated mechanisms, closing takes place after the charging process. An electrical closing lock-out prevents unpermissible closing of the circuit-breaker. The closing lock-out releases the operation of the circuit-breaker when auxiliary voltage is available, and blocks both local manual closing and remote electrical closing mechanically when there is no auxiliary voltage available.

The operating voltage of the electrical closing lock-out is the same as that of the 1st release. If constant CLOSE and OPEN commands are present at the vacuum circuit-breaker at the same time, the vacuum circuit-breaker will return to the open position after closing. It remains in this position until a new CLOSE command is given. In this manner, continuous closing and opening (= "pumping") is prevented.

Interlocking

Mechanical interlocking for stored-energy mechanisms

To interlock circuit-breaker trucks, withdrawable parts or disconnectors according to the switch position, the storedenergy mechanisms of 3AH5 circuit-breakers can be equipped with a mechanical interlocking. A sensor at the switchgear checks the position of the circuit-breaker and prevents the open circuit-breaker in a reliable way from being closed mechanically and electrically.

Electrical interlocking

The vacuum circuit-breakers can be integrated in electromagnetic feeder or switchgear interlocks. In case of electrical interlocking, the disconnector or its operating mechanism is equipped with a magnetic lock-out mechanism. This mechanism is controlled by an auxiliary contact of the circuit-breaker, so that the disconnector can only be operated when the circuit-breaker is open. On the other hand, the vacuum circuit-breaker is also controlled by the disconnector or its operating mechanism, so that it can only be closed when the disconnector is in an end position. For this purpose, the circuit-breaker operating mechanism must be equipped with a closing lock-out (see "Closing").

Standards

The vacuum circuit-breakers conform to the following standards:

- IEC 62271-100 (former IEC 60056)
- IEC 60694 (in future IEC 62271-1)
- VDE 0671 (former VDE 0670 Part 100 and VDE 0670 Part 1000)

All 3AH5 vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100.

Ambient conditions

The vacuum circuit-breakers are designed for the normal operating conditions defined in IEC 62271-100.

Condensation can occasionally occur under the ambient conditions shown opposite. 3AH5 vacuum circuit-breakers are suitable for use in the following climatic classes according to IEC 60721, Part 3-3:

Climatic ambient conditions:	Class 3K4 ¹⁾
Biological ambient conditions:	Class 3B1
Mechanical ambient conditions:	Class 3M2
Chemically-active substances:	Class 3C2 ²⁾
Mechanically-active substances:	Class 3S2 3)

1) Low temperature limit: - 5 °C

2) Without icing and wind-driven precipitation

3) Restriction: Clean insulation parts

Current carrying capacity

The rated normal currents specified in the opposite diagram have been defined according to IEC 62271-100 for an ambient temperature of + 40 °C and apply to open switchgear. For enclosed switchgear the data of the switchgear manufacturer applies.

At ambient temperatures below + 40 °C, higher normal currents can be carried (see diagram):

Characteristics curve $1 \cong$ Rated normal current 800 A Characteristics curve $2 \cong$ Rated normal current 1250 A Characteristics curve $3 \cong$ Rated normal current 2000 A Characteristics curve $4 \cong$ Rated normal current 2500 A

Dielectric strength

The dielectric strength of air insulation decreases with increasing altitude due to low air density. According to IEC 60694, the rated lightning impulse withstand voltage values specified in the chapter "Technical Data" apply to a site altitude of 1000 m above sea level. For an altitude above 1000 m, the insulation level must be corrected according to the opposite diagram.

The characteristic shown applies to the rated short-duration power-frequency withstand voltage and the rated lightning impulse withstand voltage.

To select the devices, the following applies:

 $U \ge U_0 \ge K_a$

U Rated withstand voltage under standard reference atmosphere

 ${\rm U}_0~~{\rm Rated}$ with stand voltage requested for the place of installation

 $\rm K_{a}$ ~ Altitude correction factor according to the opposite diagram

<u>Example</u>

For a requested rated lightning impulse withstand voltage of 75 kV at an altitude of 2500 m, an insulation level of 90 kV under standard reference atmosphere is required as a minimum:

90 kV \ge 75 kV x 1.2

ge	cing					F	Rated norma	al current (A)								
Rated voltage	Rated short- circuit breaking current		800			1250 2000											
Rated	Rated circuit currer																
kV	kA	160	210	275	160	210	275	350	210	275	350	210	275				
12	13.1																
	16																
	20																
	25																
	31.5																
17.5	25																
	31.5																
24	16																
	20																
	25																
36	16																
	25																

Product range overview

Basic equipment

Features	Minimum equipment	Alternative equipment	Remarks
Operating mechanism	Manual spring-operated mechanism	Manual operating stored-energy mechanism Motor operating stored-energy mechanism	Manual operating mechanism always with hand crank
Closing	Manual closing	Closing solenoid	Closing solenoid only with stored-energy mechanisms
1 st release	Shunt release	-	-
2 nd release	Without	Shunt release, undervoltage release, c.toperated release	-
Varistor circuit	Installed for \geq 60 V DC	-	For limiting switching overvoltages
Auxiliary switch	2 NO + 2 NC	6 NO + 6 NC 12 NO + 12 NC	12 NO + 12 NC Only with 64-pole plug
Plug connector	Without	24-pole terminal strip 24-pole plug 64-pole plug	24-pole plug Not with 12 NO + 12 NC
Anti-pumping	-	For motor operating stored-energy mechanism	-
Circuit-breaker tripping signal	Without	Possible	-
Operating cycle counter	Available	-	-
Electrical closing lock-out	Without	Possible	Prevents unpermissible closing of the circuit-breaker
Interlocking	Without	Mechanical interlocking	-

Page

3AH5 135-6 vacuum circuit-breaker

R-HG 11-188.eps

3AH5 204-1 vacuum circuit-breaker

Equipment Selection	11
Ordering data and configuration example	12
Selection of basic types, circuit-breakers:	
Voltage level 12 kV	13
Voltage level 17.5 kV	13
Voltage level 24 kV	14
Voltage level 36 kV	14
Selection of secondary equipment:	
Equipment features	15
Tripping combination	15
Operating voltage, closing solenoid	16
Operating voltage, 1 st shunt release	16
Operating voltage, 2 nd release	17
Counter and circuit-breaker tripping signal	18
Operating voltage for operating mechanism/ mechanism type	18
Auxiliary switch, secondary connection,	10
interlocking	19
Languages and frequency	19
Additional equipment	20
Accessories and spare parts	21

Order number structure

The 3AH5 vacuum circuit-breakers consist of a primary and a secondary part. The relevant data make up the 16-digit order number. The primary part covers the main electrical data of the circuit-breaker poles. The secondary part covers the auxiliary devices which are necessary for operating and controlling the vacuum circuit-breaker.

Order codes

Individual equipment versions, marked with **9** or **Z** in the 9th or 16th position, are explained more in detail by a 3-digit order code. Several order codes can be added to the order number in succession and in any sequence.

<u>Special versions</u> (★)

In case of special versions, "-Z" is added to the order number and a descriptive order code follows. If several special versions are required, the suffix "-Z" is listed only once. If a requested special version is not in the catalog and can therefore not be ordered via order code, it has to be identified with **Y 9 9** after consultation. The agreement hereto is made between your responsible sales partner and the order processing department (PTD M C S) in our Switchgear Factory in Berlin.

Configuration example

In order to simplify the selection of the correct order number for the requested circuit-breaker type, you will find a configuration example on each side of the chapter "Equipment Selection". For the selection of the secondary part, always the last example of the primary part was taken over and continued, so that at the end of the equipment selection (page 20) a completely configured circuit-breaker results as an example.

On the foldout page we offer a configuring aid. Here you can fill in the order number you have determined for your circuit-breaker.

Example for Order No.: Order codes:

Equipment Selection Selection of basic types, circuit-breakers

12 kV						Position:	1	2	3	4	5	6	7	_	8	9	10	11	12	_	13	14	15	16			Orde	er co	odes
50/60 Hz					Orc	ler No.:	3	Α	Н	5				-						-					-	*			
Rated voltage	Rated lightning impulse withstand voltage	Rated short-duration power-frequency withstand voltage	Rated short-circuit breaking current at 36 % DC component	Rated short-circuit making current (at 50/60 Hz)	Pole-center distance	Rated normal current										See page 15	See page 16	See page 16	See page 17		See page 18	See page 18	See page 19	See page 19		See page 20			
U _r	U _p	U _d	I I I II	I L C		I _r										01	0,	0,	0,		01	0,	0,	01		01			
kV	kV	kV	kA	kA	mm	A																							
12	75	28	13.1	33/34	160	800	3	А	н	5	1	2	1	-	1														
					210	800	3		Н	5	1	3	1	-	1														
			16	40/42	160	800 1250	3	A	H	5 5	1	2	2	-	1														
					210	800	3	A	Н	5	1	2	2	-	2														
						1250	3	Α	Н	5	1	3	2	-	2														
			20	50/52	160	800 1250	3	A	H	5 5	1	2	3	-	1														
					210	800	3	A	Н	5	1	2	3	-	2														
						1250	3	Α	Н	5	1	3	3	-	2														
			25	63/65	160	2000 800	3	A	H	5 5	1	3	3	-	4 1														
			25	03/03	100	1250	3	A	Н	5	1	2	4	-	2														
					210	800	3	Α	Н	5	1	3	4	-	1														
						1250	3	A	Н	5	1	3	4	-	2														
			31.5	80/82	160	2500 1250	3	A A	H H	5 5	1	3 2	4 5	-	6 2														
					210	1250	3	_	Η	5	1	3	5	-	2														
						2500	3	Α	Н	5	1	3	5	-	6														
17.5 k 50/60 Hz U _r		11	I	I		I																							
	Up	U _d	I _{sc}	I _{ma}		I _r																							
kV	kV	kV	kA	kA	mm	A																							
17.5	95	38	25	63/65	160	800 1250	3		H	5 5	2	0	4	-	1														
					210	800		A		_	2		4	-	2														
						1250	3				2		4	-	2														
			31.5	80/82	160	2500 1250	3	A	H	5 5	2	1 0	4	-	6														
			51.5	00/02	210	1250			H					-															
						2500	3		Η				5	-															
Special ve	rsion (avai			uit-breaker	s)																					-	-		2
		U _d = 42 I	ζV																						-	Z	E	1	3
BAH5 vacuu Rated volta	t ion exam um circuit-l ge <i>U</i> _r = 17. t-circuit bre	breaker	nt <i>I.c.</i> = 25 k	κA			3	A	Н	5																			
Rated norm Pole-center		I _r = 2500 A 210 mm	- st 								2	1	4	-	6										-	Z	E	1	3
				Exai	mple for Or Orde	der No.: er codes:	3 E	A 1	H 3	5	2	1	4	-	6					-					-	Z			

Equipment Selection Selection of basic types, circuit-breakers

F0/60 ···						Position:	1 3	2	3	4	5	_	7		3 9			12	_			5 16		*	Orc	ler co
50/60 Hz					Ord	er No.:	3	Α	E	1	-	•	•	- 1				-	-				-	*	•	
	Rated lightning impulse withstand voltage	ц	Rated short-circuit breaking current at 36 % DC component		e	ent																				
	ıg im tage	uratio ncy tage	rcuit ent mpo	rcuit	stano	curre																				
Rated voltage	d vol	Rated short-duration power-frequency withstand voltage	ort-ci curre C co	Rated short-circuit making current (at 50/60 Hz)	Pole-center distance	Rated normal current									1	16	16	17		18		19	2	20		
lov b	d ligh stanc	d sho er-fre stano	d shc king	d shc ng c 0/60	cent	lon b									0000	Dage	bage	oage		bage	oage	oage Dage	n Fi	oage		
Rated	Rated	Rated Dowe withs	Rated oreal at 36	Ratec maki (at 5(Pole-	Rated									Coo pago 15	See page 16	See page 16	See page		See page 18	See page 18	See page 19 See page 19	2	See page 20		
U _r	U _p	U _d	I I I I	Ima Ima		I _r									Ŭ	, ,,	0,	0,		0, 0	,, (,, 0	,	01		
kV	kV	kV	kA	kA	mm	A																				
24	125	50	16	40/42	210	800	3	А	н	5	2	7	2	- '	1											
						1250	3	Α	Н	5	2	7	_	_	2											
					275	800 1250	3	A	H	5 5				- 1	1 2											
			20	50/52	210	1250	3	A	н	5	2	7		- 2												
						2000	3	Α	Н	5	2	7	_	- 4												
					275	2500 1250	3	A	H	5 5	2	7 8		- (_											
					275	2000			н	э 5	2			- 4												
						2500	3	А	Н	5	2	8	3	- (5											
			25	63/65	210	1250	3	A	Н	5	2	7		- 2												
					275	2500 1250	3	A A	H H	5 5	2	7 8			5 2											
					275	2500	3	A	н	5	2	8			5											
36 kV 50/60 Hz																										
U _r	Up	U _d	$I_{\rm SC}$	I _{ma}		<i>I</i> r																				
kV	kV	kV	kA	kA	mm	А																				
36	170	70	16	40/42	275	1250	3	А	н	5	3	2	2	- 2	2											
					350	1250	3	Α	Н	5	3	1		- 2												
			25	63/65	275 350	1250 1250	3	A	H	5	3	2		- 1	2											
					550	2000		A	Н	5		1		- 4												
Configurati																										
3AH5 vacuu	um circuit-l	breaker					3	A	Н	5																
3AH5 vacuu Rated voltag	um circuit-l ge U _r = 36	breaker kV	nt / = 25 k	ζA			3	Α	н	5																
Configurati 3AH5 vacuu Rated volta <u>c</u> Rated short- Rated norm	um circuit-l ge U _r = 36 -circuit bre	breaker kV aking curre	nt I _{sc} = 25 k	ζA			3	A	Н	5																
3AH5 vacuu Rated voltag Rated short-	um circuit-l ge U _r = 36 -circuit bre al current	breaker kV aking curre I _r = 2000 A	nt I _{sc} = 25 k	κA			3	A	Н	5	3	1	4	_ /	4											
3AH5 vacuu Rated voltag Rated short- Rated norm	um circuit-l ge U _r = 36 -circuit bre al current	breaker kV aking curre I _r = 2000 A	nt I _{sc} = 25 k		nple for Or	der No.:	3	A	H	5	3	1	4		4				-							

Equipment Selection

Selection of secondary equipment

Equipment features for the different types of operating mechanisms

Type of operating mechanism	Closing solenoid	1 st shunt release	2 nd release	Counter	Circuit-breaker tripping signal	Auxiliary switch 2 NO + 2 NC	Auxiliary switch 6 NO + 6 NC	Auxiliary switch 12 NO + 12 NC	Without terminal strip	24-pole terminal strip	24-pole plug connection	64-pole plug connection	Mechanical interlocking
Manual spring- operated mechanism	-		0	•	0	×	×	-	×	×	×	-	0
Manual operating stored-energy mechanism	0		0	•	0	×	×	-	×	×	×	-	0
Motor operating stored-energy mechanism			0	•	0	-	×	×	-	×	×	×	0
	Base	sic equipme	ent 🗙 (Optionally s	electable ba	asic equipm	nent O	Selectable	additional	equipment	– Not	available	

9 th positio Release c		on				Position: der No.:	1 3	2 A	3 H	4 5	5	6	-	9		_	12 -	- 1	3 1	_	5 1	16 ■ -	*	_	der co	odes
1 st shunt release	2 nd shunt release	Undervoltage release	C.toperated release 0.5 A	C.toperated release 1.0 A	C.toperated release with tripping pulse $\ge 0.1 \text{ Ws} (10 \Omega)$	C.toperated release with tripping pulse $\geq 0.1 \text{ Ws} (20 \Omega)$									See page 16	See page 16	See page 17	Con 1720 10	See page 10	page	See page 19	See page 19	See page 20			
														М												
														N												
														R												
														U												
														U								-	Ζ	А	4	6
														V												
														V								-	Z	А	4	5

3 A H 5

Α 4 6 1 4 – 4

3

Configuration example

3AH5 vacuum circuit-breaker

 $(U_r = 36 \text{ kV}, I_{sc} = 25 \text{ kA}, I_r = 2000 \text{ A}, \text{ pole-center distance} = 350 \text{ mm})$

 1^{st} shunt release; c.t.-operated release with 1.0 A

Example for Order No.: 3 A H Order codes:

Г

2

ating volta	ge of the closing	solenoid	Position: Order No.:	1 2 3 A	4 5 5 ∎	6	7 –	8 9		11	12 -	- 13	14	_	-	- *	Ore
											7	00	00	6	6	0	
Standard volta	ages	Special voltages									See page 17	See page 18	See page 18	See page 19	See page 19	See page 20	
To be observe	ed for selection!										• ·	•.		•		•	
		enerally without closir	-														
		an. option. with closin	-														
 Motor op. sto 	ored-energy mech. ge	enerally with closing so	olenoid (B – Z)														
Nithout closin	ng solenoid								Α								
24 V DC	5								В								
18 V DC									С								
50 V DC									D								
110 V DC									Е								
220 V DC									F								
100 V AC	50/60 Hz ¹⁾								H								
110 V AC 230 V AC	50/60 Hz ¹⁾ 50/60 Hz ¹⁾								L K								
230 V AC	50/60 HZ 17	30 V DC							Z			W/i+k	ord	er co	odo		к
		30 V DC							Z					er co			K
		120 V DC							z					er co			ĸ
		125 V DC							Ζ					er co			К
		127 V DC							Z			With	n ord	er co	ode		к
		240 V DC							Ζ			With	ord	er co	ode		К
		120 V AC	50/60 Hz ¹⁾						Z			With	ord	er co	ode		к
		125 V AC 240 V AC	50/60 Hz ¹⁾ 50/60 Hz ¹⁾						Z					<mark>er co</mark> er co			K
position ating volta	ge of the 1 st shu	nt release															
ating volta		nt release Special voltages															
ating volta										1							
ating volta Standard volta 24 V DC 48 V DC										2							
ating volta Standard volta 24 V DC 18 V DC 50 V DC										2 3							
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC										2 3 4							
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC	ages									2 3 4 5							
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC	ages 50/60 Hz ¹⁾									2 3 4 5 6							
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾									2 3 4 5 6 7							
ating volta Standard volta 24 V DC 18 V DC 18 V DC 10 V DC 10 V DC 10 V DC 10 V AC 10 V AC	ages 50/60 Hz ¹⁾	Special voltages								2 3 4 5 6 7 8		With	1 ord	er cc	ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾									2 3 4 5 6 7				er cc er cc			
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages								2 3 4 5 6 7 8 9		With	ord		ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages 30 V DC 32 V DC								2 3 4 5 6 7 8 9 9		With With	ord	er co	ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages								2 3 4 5 6 7 8 9 9 9 9 9 9		With With With With	ord ord ord ord	er co er co er co er co	ode ode ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages								2 3 4 5 7 8 9 9 9 9 9 9 9 9		With With With With With	ord ord ord ord ord ord	er co er co er co er co er co	ode ode ode ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages	50/60 Hz ¹⁾							2 3 4 5 7 8 9 9 9 9 9 9 9 9 9		With With With With With With	ord ord ord ord ord ord ord	er co er co er co er co er co er co	ode ode ode ode ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages	50/60 Hz ¹⁾							2 3 4 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9		With With With With With With With	ord ord ord ord ord ord ord ord	er co er co er co er co er co er co	ode ode ode ode ode ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 110 V DC 220 V DC 100 V AC 110 V AC 230 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages	50/60 Hz ¹⁾ 50/60 Hz ¹⁾							2 3 4 5 7 8 9 9 9 9 9 9 9 9 9		With With With With With With With	ord ord ord ord ord ord ord ord	er co er co er co er co er co er co	ode ode ode ode ode ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 10 V DC 220 V DC 10 V AC 110 V AC 230 V AC 230 V AC 230 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages	50/60 Hz ¹⁾ 50/60 Hz ¹⁾ osition							2 3 4 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9		With With With With With With With	ord ord ord ord ord ord ord ord	er co er co er co er co er co er co	ode ode ode ode ode ode ode		
ating volta Standard volta 24 V DC 48 V DC 50 V DC 10 V DC 220 V DC 10 V AC 110 V AC 230 V AC 230 V AC 230 V AC	ages 50/60 Hz ¹⁾ 50/60 Hz ¹⁾ 50/60 Hz ¹⁾ 50/60 Hz ¹⁾	Special voltages 30 V DC 32 V DC 120 V DC 125 V DC 127 V DC 240 V DC 120 V AC 125 V AC 240 V AC 125 V AC 240 V AC	50/60 Hz ¹⁾ 50/60 Hz ¹⁾ osition							2 3 4 5 7 8 9 9 9 9 9 9 9 9 9 9 9		With With With With With With With	ord ord ord ord ord ord ord ord	er co er co er co er co er co er co	ode ode ode ode ode ode ode		

Operating voltage of the 1st shunt release **48 V DC**

Example for Order No.: 3 A H 5 3 Order codes:

Α 4 6 4

4

1

2 -

^h position erating voltage of the 2 nd rele	ease	Position: Order No.:	1 3	2 A	 _	56	-	8	9	10	11	12 -	13	14	15	16	- *	Orc	der c	odes
Standard voltages	Special v	voltages											See page 18	See page 18	See page 19	See page 19	See page 20			
Without, or c.toperated release												0								
24 V DC												1								
48 V DC												2								
60 V DC												3								
110 V DC												4								
220 V DC												5								
100 V AC 50/60 Hz ¹⁾												6								
110 V AC 50/60 Hz ¹⁾												7								
230 V AC 50/60 Hz ¹⁾												8								
	30 V DC											9	W	ith o	order	cod	5	Μ	1	Α
	32 V DC											9	W	ith o	order	cod	5	М	1	В
	120 V D0	C										9	W	ith o	order	code	5	Μ	1	C
	125 V D0	C										9	W	ith o	order	cod	9	М	1	D
	127 V D0	C										9	W	ith o	order	cod	5	Μ	1	E
	240 V D0	C										9	W	ith o	order	cod	5	М	1	F
	120 V A0	50/60 Hz ¹⁾										9	W	ith o	order	cod	5	Μ	1	K
	125 V A0	C 50/60 Hz ¹⁾										9	W	ith o	order	cod	9	М	1	L
	240 V A0	50/60 Hz ¹⁾										9	W	ith o	order	cod	5	Μ	1	Μ
Special version																				
To operate the 2 nd release as an u	ndervoltage re	elease on an																		
energy store type AN1902- (for D	C) or AN1902-	2 (for AC),																		
both make Bender, the operating																				
and whether the energy store will	l be provided b	y the customer																		
or included in the scope of supply	·.																			
	Energy store																			
	Туре	In the scope of delivery																		
60 V DC	AN1902-	no										9	W	ith o	order	cod	5	М	2	D
110 V DC	AN1902-	no										9	W	ith o	order	cod	9	М	2	Е
220 V DC	AN1902-	no										9	W	ith o	order	cod	5	Μ	2	F
100/110/230 V AC	AN1901-2	no										9	W	ith o	order	cod	9			G
60 V DC	AN1902-	yes										9	W	ith o	order	cod	5	М	3	D
		yes										9	W	ith o	order	cod	2	М	3	F
110 V DC	AN1902-	yes																		
110 V DC 220 V DC	AN1902- AN1902-	yes										9	W			cod		Μ	3	
		-										_		ith o	order		5			F

1) The AC frequency 50 or 60 Hz is selected at the 16th position of the order number together with the language (see page 19)

Configuration example

3AH5 vacuum circuit-breaker

 $(U_r = 36 \text{ kV}, I_{sc} = 25 \text{ kA}, I_r = 2000 \text{ A}, \text{ pole-center distance} = 350 \text{ mm})$ 2nd release as c.t.-operated release with 1.0 A

> Example for Order No.: Order codes:

2

		ping signal	Order No.:	3 A H	5 🔳 🔳	• -	• •	-				-	*		
	ne selection of the co gnal depends on the		uit-breaker tripping condary connection.												
Counter Circuit-breaker	tripping signal Without terminal strip/plug	24-pole terminal strip/plug	64-pole plug Definition 15 th position (see page 19)								See page 19	see page 19	See page 20		
•	0		А, В						1						
1)		O ¹⁾	E, F, G and H						1						
•		0	E, F, G and H						2						
1)	1)		O ¹⁾ J, K, L and M						5		_				
Equipment	t to be selected	O Depende	nt equipment												
position erating volta of operatir	ige of the operat ig mechanism	ing mechanism	n/												
Standard volta	ages	Special volta	iges												
Manual operat	. stored-energy mecha	an. (hand crank incl.	in the scope of supply)							А					
Manual spring-	-operated mechan. (ha	and crank incl. in the	scope of supply)							Х					
Motor operati	na stored-energy me	chan (selection of	an operating voltage)												
24 V DC	ig stored energy me	chan. (Selection on	in operating voltage)							в					
48 V DC										С					
60 V DC										D					
110 V DC										E					
220 V DC										F					
100 V AC	50/60 Hz ²⁾									н					
110 V AC	50/60 Hz ²⁾									J					
230 V AC	50/60 Hz ²⁾									К					
		30 V DC								_		order		Р	1
		32 V DC										order		Р	1
		120 V DC										order		Р	1
		125 V DC								_		order		Р	1
		127 V DC										order			1
		240 V DC								Z		order		P	1
			50/60 Hz ²⁾								With	order		Р	1
		120 V AC													1
		125 V AC 240 V AC	50/60 Hz ²⁾ 50/60 Hz ²⁾							Ζ	With	order order		P P	
		125 V AC	50/60 Hz ²⁾							Ζ	With				

Manual operating stored-energy mechanism

Example for Order No.: Order codes:

Auxiliary switch [10] 6 NO + 6 NC Auxiliary switch 12 NO + 12 NC 2)	 Without terminal strip 1) 24-pole 	Control of the stription of the str	64-pole plug ²⁾	Mechanical interlocking								See page 18			See page 20		
:	: .	24-pole	64-pole plug ²⁾	•								e page 18			e page 20		
:	: .	•		•								Se			Se		
:	-	÷											А				
:	•	•											B E ³⁾				
•												-	F ³⁾				
												•	G ³⁾				
÷ .			_										H ³⁾				
													J ⁴⁾ K ⁴⁾				
-													L 4)				
													M ⁴⁾				
0 1			ector ((lor K)										_	7	Δ	2
	-			. ,										-			2
operating inst			ate														
		- 5															
		DC															
	60 Hz													0			
		DC												1			
	50 Hz or 60 Hz	DC												_			
	50 Hz or 60 Hz 50 Hz or													1 2 3 4			
	50 Hz or 60 Hz 50 Hz or 60 Hz	DC												1 2 3 4 5			
	50 Hz or 60 Hz 50 Hz or	DC												1 2 3 4			
ages on request	50 Hz or 60 Hz 50 Hz or 60 Hz 50 Hz or	DC												1 2 3 4 5 6			
ions	50 Hz or 60 Hz 50 Hz or 60 Hz 50 Hz or 60 Hz	DC DC	nsultatio	20										1 2 3 4 5 6			
	50 Hz or 60 Hz 50 Hz or 60 Hz 50 Hz or 60 Hz e rating plate (c	DC DC nly after cc	onsultatio	on										1 2 3 4 5 6 7	z	Y	1
	tch 6 NO + 6 I tch 12 NO + 12 I with motor opera with motor operation ponents are wire witch conr ponents are wire witches are wire liagrams	tch 6 NO + 6 NC and 64-pole tch 12 NO + 12 NC and 64-pole with motor operating stored-en with motor operating stored-en ponents are wired to the lower iary switch connections are no ponents are wired to the lower witches are wired to the lower witches are wired to the lower biggrams	tch 12 NO + 12 NC and 64-pole plug conn with motor operating stored-energy mech with motor operating stored-energy mech ponents are wired to the lower part of the lary switch connections are not wired ponents are wired to the lower part of the witches are wired to the lower part of the liagrams of operating voltages operating instructions and rating pl Frequency 50 Hz or DC	tch 6 NO + 6 NC and 64-pole plug connector tch 12 NO + 12 NC and 64-pole plug connector (with motor operating stored-energy mechanism with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. ary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug acc liagrams of operating voltages operating instructions and rating plate Frequency 50 Hz or DC	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams of operating voltages operating instructions and rating plate Frequency	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams of operating voltages operating instructions and rating plate Frequency	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams of operating voltages operating instructions and rating plate	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams of operating voltages operating instructions and rating plate	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug according liagrams of operating voltages operating instructions and rating plate	<pre>tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) - vith motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug. billingrams of operating voltages poperating instructions and rating plate</pre>	tch 6 NO + 6 NC and 64-pole plug connector (J or K) t ch 12 NO + 12 NC and 64-pole plug connector (L or M) vith motor operating stored-energy mechanism with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug. of operating voltages operating instructions and rating plate	tch 6 NO + 6 NC and 64-pole plug connector (J or K) tch 12 NO + 12 NC and 64-pole plug connector (L or M) vith motor operating stored-energy mechanism with motor operating stored-energy mechanism ponents are wired to the lower part of the plug. iary switch connections are not wired ponents are wired to the lower part of the plug. witches are wired to the lower part of the plug. iargrams of operating voltages operating instructions and rating plate

Example for Order No.: Order codes:

A 4 6

Equipment Selection Additional equipment

Options Wiring cables, halogen-free and flame-retardant Condensation protection, heating for 230 V AC, 50 W Silicone-free design With electrical closing lock-out ¹⁾ (not for 3AH512, 3AH5											
Wiring cables, halogen-free and flame-retardant Condensation protection, heating for 230 V AC, 50 W Silicone-free design With electrical closing lock-out ¹⁾ (not for 3AH512, 3AH5											
Condensation protection, heating for 230 V AC, 50 W Silicone-free design With electrical closing lock-out ¹⁾ (not for 3AH512, 3AH5											
Silicone-free design With electrical closing lock-out ¹⁾ (not for 3AH512, 3AH5								-	z	А	1
With electrical closing lock-out ¹⁾ (not for 3AH512, 3AH5								-	Ζ	Α	3
-								-	Z	Α	3
	520)							-	Ζ	Α	4
Additional rating plate, loose delivery								-	_	В	0
Routine test certificate enclosed								-	Z	F	2
Hand crank (also with motor operating mechanism) for manual charging of the closing spring								-	z	F	3
Further non-listed special versions (only after consultation with Dept. PTD M C S, Berlin). Information additionally in	on 1 clear text							_	z	Y	9
The operating voltage of the closing lock-out is the sam										Ċ	-
s that of the 1 st shunt release.											
figuration example											
15 vacuum circuit-breaker		3 A H	5								
ed voltage $U_r = 36 \text{ kV}$			5								
ed short-circuit breaking current $I_{sc} = 25 \text{ kA}$											
a normal current $I_r = 2000 \text{ A}$											
-center distance = 350 mm			3 1	4 -	4						
hunt release, c.toperated release with 1.0 A			5 1		U			-	z	Α	4
erating voltage of the closing solenoid 48 V DC					С						
erating voltage of the 1 st shunt release 48 V DC					-	2					
release as c.toperated release with 1.0 A						0 -					
n counter and breaker tripping signal							2				
nual operating stored-energy mechanism							А				
iliary switch 6 NO + 6 NC, 24-pole plug and mechanical in	nterlocking						н				
quency 50 Hz or DC, operating instructions and rating plat							_	2			
electrical closing lock-out (not for 3AH512, 3AH520)	5							_	Ζ	Α	4
tine test certificate enclosed								-	z	F	2
											_
							2 A H	2 -	Ζ		-

Retrofitting

When releases/solenoids are retrofitted, the order numbers of the built-on parts must also be specified. For other additional equipment, the required mounting parts are included in the delivery.

Spare parts

When releases/solenoids are required as spare parts, the order number and the type of construction of the associated circuit-breaker type must also be specified.

Remark for orders

The order numbers are applicable to circuit-breakers of current manufacture. When mounting parts or spare parts are being ordered for an existing vacuum circuit-breaker, always quote the type designation, serial number, design code and the year of manufacture of the circuit-breaker to be sure to get the correct delivery.

Accessories for the plug connector

Included in the scope of supply of the basic equipment for 3AH5 vacuum circuit-breakers:

For 24-pole plug connector

- Lower part of plug
- Crimp sockets acc. to number of contacts
- Upper part of plug with screw contacts (no crimp sockets required)

For 64-pole plug connector

- Lower part of plug
- Upper part of plug
- Crimp sockets according to number of contacts

Vacuum interrupters and other spare parts must only be replaced by instructed personnel.

Designation	Remarks	Operating voltage	Order No.
Hand crank			3AX15 30-2B
Lubricant	(for special application conditions)		
	180 g Klüber-Isoflex Topas L32N		3AX11 33-3H
	1 kg Klüber-Isoflex Topas L32N		3AX11 33-3E
	1 kg Shell Tellus oil 32 (special oil)		3AX11 33-2D
Operating solenoid			
	Used as closing solenoid or	24 V DC	3AY15 10-5B
	1 st shunt release	30/32 V DC	3AY15 10-5M
		48 V DC	3AY15 10-5C
	Including varistor	60 V DC	3AY15 10-5D
		100/120 V DC	3AY15 10-5E
		125/127 V DC	3AY15 10-5N
		220/240 V DC	3AY15 10-5F
	Including rectifier	100 – 125 V AC, 50/60 Hz	3AY15 10-5E
		230/240 V AC, 50/60 Hz	3AY15 10-5F
2 nd shunt release			
	Without varistor, without rectifier	24/32 V DC	3AX11 01-2B
	Including varistor	48/60 V DC	3AX11 01-2C
		110/127 V DC	3AX11 01-2E
		220/240 V DC	3AX11 01-2F
	Including rectifier	100/125 V AC, 50 Hz	3AX11 01-2G
		230/240 V AC, 50 Hz	3AX11 01-2J
		100/125 V AC, 60 Hz	3AX11 01-3G
		230/240 V AC, 60 Hz	3AX11 01-3J
Mounting parts (for retrofitting)	With one existing shunt release		3AX16 11-2A
Current-transformer			
operated release	For rated normal current 0.5 A, including varistor and	l rectifier	3AX11 02-2A
	For rated normal current 1.0 A, including varistor and		3AX11 02-2B
	For tripping pulse \geq 0.1 WS, for protection system 75		3AX11 04-0B
	For tripping pulse \geq 0.1 WS, for protection relay 7SJ4		3AX11 04-2B
Mounting parts (for retrofitting)	With one existing shunt release		3AX16 11-2A

Siemens HG 11.05 · 2007 21

Designation	Remarks	Operating voltage	Order No.
Undervoltage release	Without united without restifier	24 V DC	24.11.02
	Without varistor, without rectifier		3AX11 03-2
		48 V DC	3AX11 03-2
	Including varistor	60 V DC	3AX11 03-2
		110 V DC	3AX11 03-2
		120 – 127 V DC	3AX11 03-2
		220 V DC	3AX11 03-3
		240 V DC	3AX11 03-
	Including rectifier and varistor	100 V AC, 50 Hz	3AX11 03-
		110 – 125 V AC, 50 Hz	3AX11 03-
		230 V AC, 50 Hz	3AX11 03-3
		100 V AC, 60 Hz	3AX11 03-
		110 – 125 V AC, 60 Hz	3AX11 03-
		230 V AC, 60 Hz	3AX11 03-
Mounting parts (for retrofitting)	With one existing shunt release		3AX1613-
Undervoltage release			
	In combination with energy store AN1902-	60 V DC	3AX11 03-3
	(make Bender), specified voltage corresponds to the	110 V DC	3AX11 03-3
	input voltage of the energy store	220 V DC	3AX11 03-
	In combination with energy store AN1901-2	100 V AC, 50/60 Hz	3AX11 03-
	(make Bender), specified voltage corresponds to the	110 V AC, 50/60 Hz	3AX11 03-
	input voltage of the energy store	230 V AC, 50/60 Hz	3AX11 03-
Energy store	(for delayed tripping of undervoltage release)		
Make Bender	Type AN1901-2B, with dropout delay of approx. 1/1.8/2.5 s	lnput voltage 100/110/230 V AC, 50/60 Hz, Output voltage 220 V DC	3AX11 35-
	Type AN1902-1B, with dropout delay of approx. 0.5/0.9/1.5 s	Input and output voltage 220 V DC	3AX11 35-
	Type AN1902-2B, with dropout delay of approx. 0.8/0.9/1.5 s	Input and output voltage 110 V DC	3AX11 35-
	Type AN1902-3B, with dropout delay of approx. 0.5/0.9/1.5 s	Input and output voltage 60 V DC	3AX11 35-
Digital, c.toperated			
overcurrent-time relay	As release, make SEG, type WIP 1	For overcurrent	3AX11 35-
		For earth fault	3AX11 35-
Drive motor			
	No retrofitting for manual spring-operated mechanism	24/30/32 V DC	3AY17 11-2
		48 V DC	3AY17 11-2
	Including varistor	60 V DC	3AY17 11-2
	Required for AC rectifier	100/110/126 V DC/AC	3AY17 11-2
		220 V DC/230 V AC	3AY17 11-2
Rectifier component			
		100/250 V AC	3AY15 25-1
Auxiliary contactor			
(type 3TH20 22-7)	For anti-pumping	24/30/32 V DC	SWB: 4868
		48 V DC	SWB: 4868
		60 V DC	SWB: 4868
		110/120 V DC	SWB: 4868
		125 V DC	SWB: 4773
		220 V – 240 V DC	SWB: 4868
		100 V – 125 V AC, 50 Hz	SWB: 4868
		230 V – 240 V AC, 50 Hz	SWB: 4990
		100 V – 125 V AC, 60 Hz	SWB: 4867
		230 V – 240 V AC, 60 Hz	SWB: 4990

Designation	Remarks		Operating voltage	Order No.
Electrical closing lock-out				
			24 V DC	3AX16 05-5B
			48 V DC	3AX16 05-5C
			60 V DC	3AX16 05-5D
			110 V DC	3AX16 05-5E
			220 V DC	3AX16 05-5F
			100 V AC, 50/60 Hz	3AX16 05-5G
			110 V AC, 50/60 Hz	3AX16 05-5H
			230 V AC, 50/60 Hz	3AX16 05-5J
Mounting parts (for retrofitting)				3AX16 15-2A
Position switch	Type 3SE4 (as spare part), without installat	ion accessories		
	Used for:		Nos.	SWB: 46677
	 Electrical anti-pumping (-S3) 		1	
	– Motor control (-S21, -S22)		2	
	 Closing spring charged (-S4) 		1	
	– Circuit-breaker tripping signal (-S6, -S7)		2	
	- Electrical closing lock-out (-S5)		1	
Auxiliary switch (-S1)				
	2 NO + 2 NC			3SV92 23-2A
	6 NO + 6 NC			3SV92 73-2A
	12 NO + 12 NC			3SV92 74-2A
Switch position sensor	For manual spring-operated mechanism			3AX16 20-2C
Mechanical interlocking	For stored-energy mechanism			
	 – for normal panel, pole-center distance 21 275 mm and 350 mm 	l0 mm,		3AX16 20-2A
	– for small panel, pole-center distance 160	mm		3AX16 20-2B
Varistor module	With 2 varistors			3AX15 26-0F
Wire bundle	With 10 wires for auxiliary switch connection	on to		
	– 64-pole plug connector			3AX11 34-4F
	– 24-pole plug connector			3AX11 34-2B
	– 24-pole terminal strip			3AX11 34-2C
Accessories for plug connector	(for wire cross-section 1.5 mm ²)			
. 5	Crimp pins for lower part of plug	24-pole		3AX11 34-3A
		64-pole		3AX11 34-4B
	Crimp sockets for upper part of plug	64-pole		3AX11 34-4C
	Crimping pliers			3AX11 34-4D
	Disassembly tool			3AX11 34-4G

Designation	Remarks	Design code	Order No.
Spare pole assemblies (comple	te)		
For circuit breakers:	3AH5 121-1, 3AH5 131-1	1 A	3AY17 14-64
	3AH5 122-1, 3AH5 123-1, 3AH5 124-1	1 A	3AY17 14-6
	3AH5 132-1, 3AH5 133-1, 3AH5 134-1	1 A	3AY17 14-6
	3AH5 122-2, 3AH5 123-2, 3AH5 124-2	1 A	3AY17 14-60
	3AH5 132-2, 3AH5 133-2, 3AH5 134-2	1 A	3AY17 14-60
	3AH5 135-2, 3AH5 125-2	1 A	3AY17 14-6I
	3AH5 135-6, 3AH5 133-4, 3AH5 134-6	1 A	3AY17 14-68
	3AH5 204-1, 3AH5 214-1	3 D	3AY17 14-3I
	3AH5 204-2, 3AH5 214-2	3 D	3AY17 14-4
	3AH5 214-6, 3AH5 215-6	1 A	3AY17 14-6F
	3AH5 215-2, 3AH5 205-2	1 A	3AY17 14-60
	3AH5 272-1, 3AH5 282-1	3 A	3AY17 14-8
	3AH5 272-2, 3AH5 282-2	3 A	3AY17 14-8
	3AH5 273-4, 3AH5 273-6, 3AH5 274-6	2 A	3AY17 14-7H
	3AH5 283-4, 3AH5 283-6, 3AH5 284-6	2 A	3AY17 14-7
	3AH5 273-2, 3AH5 283-2, 3AH5 284-2, 3AH5 274-2	3 A	3AY17 14-8I
	3AH5 322-2, 3AH5 324-2	1 A	3AY17 14-3
	3AH5 312-2, 3AH5 314-2	3 N	3AY17 14-31
	3AH5 314-4	1 A	3AY17 14-6

As spare parts, the vacuum interrupters are always supplied as a complete pole including post insulator.

To select the correct spare interrupter, please specify the type designation, serial number, design code and year of manufacture of the circuit-breaker. All data is given on the rating plate. Vacuum interrupters and other spare parts must only be replaced by instructed personnel.

Data on the rating plate

SIEM	ENS
Type 3AH5314-4	Design code 1A
No. S 3AH53/00002482	Year of manuf. 2006
Ur 36.0 kV 50/60 Hz	I _r 2000 A
I _{sc} 25.0 kA	t _k 3 s
U _d /U _p 70/170 kV	m 110 kg
	-
Rated operating sequen	ce: O - 0.3 s - CO - 3 min - CO
Category to IEC 62271-	100: E2, M2, C2
MADE IN	GERMANY

Note:

For any query regarding spare parts, subsequent deliveries, etc. the following four details are necessary:

- **Type** designation
- Serial **No.**
- Design code
- Year of manufacture

Motor operating mechanism with energy store and closing solenoid

Upper pole support with conductor bar connection

Page

Technical Data 25

Electrical data, dimensions and weights:	
Voltage level 12 kV	26
Voltage level 17.5 kV	28
Voltage level 24 kV	28
Voltage level 36 kV	30
Operating times	31
Short-circuit protection of motors	31
Consumption data of releases	31
Circuit diagrams	32

12 kV 50/60 Hz	Rated normal current	Pole-center distance	Rated operating sequence: 0 - 3 min - C0 - 3 min - C0	0 - 0.3 s - CO - 3 min - CO	0 - 0.3 s - C0 - 15 s - CO	Rated short-circuit duration	Rated short-circuit breaking current	DC component in % of the rated short-circuit breaking current	Asymmetrical breaking current	Rated short-circuit making current (at 50/60 Hz)	Rated lightning impulse withstand voltage	Rated short-duration power-frequency withstand voltage	Voltage drop ΔU between connections (according to IEC 60694 at DC 100 A)	Minimum creepage distance, interrupter	Minimum creepage distance, phase-to-earth	Minimum clearance, phase-to-phase	Minimum clearance, phase-to-earth	Weights	Detailed dimension drawing (has to be ordered)	Operating cycle diagram No. (see page 27)	Catalog dimension drawing No. (see page 27)
ō		Ро	Ra	Ó	Ö			Ъ	As				(ac ac	Ξ.Ξ	Σđ	Σđ	Σđ	Ň	ڪ ڪ ڪ	ğ	Ca
	I _r A	mm				t _k s	I _{sc} kA	%	kA	I _{ma} kA	U _p kV	U _d kV	mV	mm	mm	mm	mm	kg			
3AH5 121-1	800	160		0	0	3	13.1	36	14.7	33/ 34	75	28	6.0	90	135	88	95	35	3M 441 00641	1	1.1
3AH5 122-1	800	160		0	0	3	16	36	17.9	40/ 42	75	28	3.4	120	135	71	95	40	3M 441 00643	2	1.3
3AH5 122-2	1250	160		0	0	3	16	36	17.9	40/ 42	75	28	3.4	120	135	71	95	40	3M 441 00643	2	1.3
3AH5 123-1	800	160		0	0	3	20	36	22.4	50/ 52	75	28	3.4	120	135	71	95	40	3M 441 00643	3	1.3
3AH5 123-2	1250	160		0	0	3	20	36	22.4	50/ 52	75	28	3.4	120	135	71	95	40	3M 441 00643	3	1.3
3AH5 124-1	800	160		0	0	3	25	36	28	63/ 65	75	28	3.4	120	135	71	95	40	3M 441 00643	4	1.3
3AH5 124-2	1250	160		0	0	3	25	36	28	63/ 65	75	28	3.4	120	135	71	95	40	3M 441 00643	4	1.3
3AH5 125-2	1250	160		0	0	3	31.5	36	35.4	80/ 82	75	28	2.7	129	135	58	95	40	3M 441 00651	5	1.7
3AH5 131-1	800	210		0	0	3	13.1	36	14.7	33/ 34	75	28	6.0	90	135	138	95	35	3M 441 00642	1	1.2
3AH5 132-1	800	210		0	0	3	16	36	17.9	40/ 42	75	28	3.4	120	135	121	95	40	3M 441 00644	2	1.4
3AH5 132-2	1250	210		0	0	3	16	36	17.9	40/ 42	75	28	3.4	120	135	121	95	40	3M 441 00644	2	1.4
3AH5 133-1	800	210	•	0	0	3	20	36	22.4	50/ 52	75	28	3.4	120	135	121	95	40	3M 441 00644	3	1.4
3AH5 133-2	1250	210	•	0	0	3	20	36	22.4	50/ 52	75	28	3.4	120	135	121	95	40	3M 441 00644	3	1.4
3AH5 133-4	2000	210	•	0	0	3	20	36	22.4	50/ 52	75	28	1.6	129	135	91	95	55	3M 441 00646	3	1.6
3AH5 134-1	800	210	•	0	0	3	25	36	28	63/ 65	75	28	3.4	120	135	121	95	40	3M 441 00644	4	1.4
3AH5 134-2	1250	210		0	0	3	25	36	28	63/ 65	75	28	3.4	120	135	121	95	40	3M 441 00644	4	1.4
3AH5 134-6	2500	210	•	0	0	3	25	36	28	63/ 65	75	28	1.6	129	135	91	95	55	3M 441 00646	4	1.6
3AH5 135-2	1250	210	•	0	0	3	31.5	36	35.4	80/ 82	75	28	2.7	129	135	109	95	45	3M 441 00645	5	1.5
3AH5 135-6	2500	210	•	0	0	3	31.5	36	35.4	80/ 82	75	28	1.6	129	135	91	95	55	3M 441 00646	5	1.6

Standard according to IEC 62271-100 O Possible

Operating cycle diagrams and dimension drawings 12 kV

The permissible number of electrical operating cycles is shown as a function of the breaking current (r.m.s. value). All vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100. The curve shape beyond the parameters defined in IEC 62271-100 is based on average experience data. The number of operating cycles that can actually be reached can be different depending on the respective application.

					-		
		- 6		a			
					ļ		
0				٦		Ŋ.	
	ĥ	ľ		ĥ		ĥ	
_		K-	Ļ	K-	Hi	<u>_</u>	
0	┞	-	_ \ [ľ	<u>ال</u>	ļ	3 eps
			l c		1		HG11-2548 eps
	-		ι			-	9

h

Dimension drawing	a mm	b mm	c mm
1.1	160	390	490
1.2	210	490	592
1.3	160	405	490
1.4	210	505	592
1.5	210	510	592
1.6	210	534	592
1.7	160	410	490

3

17.5 kV 50/60 Hz	ent	e	sequence: 3 min - CO	3 min - CO	s - CO	duration	oreaking current	6 ircuit breaking current	king current	making current	Rated lightning impulse withstand voltage	Rated short-duration power-frequency withstand voltage	between connections 60694 at DC 100 A)	e distance,	e distance,	a)	ď.		drawing	Operating cycle diagram No. (see page 29)	drawing No. (see page 29)
Order No.	Rated normal current	Pole-center distance	Rated operating sequence: O - 3 min - CO - 3 min - CO	0 - 0.3 s - CO - 3 m	0 - 0.3 s - CO - 15 s	Rated short-circuit duration	Rated short-circuit breaking current	DC component in % of the rated short-circuit breaking	Asymmetrical breaking current	Rated short-circuit making current (at 50/60 Hz)	Rated lightning imp	Rated short-duratic withstand voltage	Voltage drop ∆U be (according to IEC 6	Minimum creepage distance, interrupter	Minimum creepage distance, phase-to-earth	Minimum clearance, phase-to-phase	Minimum clearance, phase-to-earth	Weights	Detailed dimension drawing (has to be ordered)	Operating cycle dia	Catalog dimension drawing No.
	I _r					t _k	$I_{\rm sc}$			I _{ma}	Up	Ud									
	А	mm				s	kA	%	kA	kA	kV	kV	mV	mm	mm	mm	mm	kg			
3AH5 204-1	800	160		0	0	3	25	36	28	63/ 65	95	38	3.4	129	170	176	130	40	3M 441 00705	1	2.1
3AH5 204-2	1250	160		0	0	3	25	36	28	63/ 65	95	38	3.4	129	170	176	130	40	3M 441 00705	1	2.1
3AH5 205-2	1250	160		0	0	3	31.5	36	35.4	80/ 82	95	38	2.7	129	170	140	130	40	3M 441 00652	2	2.1
3AH5 214-1	800	210		0	0	3	25	36	28	63/ 65	95	38	3.4	129	170	108	130	45	3M 441 00706	1	2.2
3AH5 214-2	1250	210		0	0	3	25	36	28	63/ 65	95	38	3.4	129	170	108	130	45	3M 441 00706	1	2.2
3AH5 214-6	2500	210		0	0	3	25	36	28	63/ 65	95	38	1.6	129	170	163	130	55	3M 441 00649	1	2.3
3AH5 215-2	1250	210		0	0	3	31.5	36	35.4	80/ 82	95	38	2.7	129	170	108	130	45	3M 441 00648	2	2.2
3AH5 215-6	2500	210		0	0	3	31.5	36	35.4	80/ 82	95	38	1.6	129	170	163	130	55	3M 441 00649	2	2.3

24 kV 50/60 Hz	I _r A	mm				t _k s	I _{sc} kA	%	kA	I _{ma} kA	U _p kV	U _d kV	mV	mm	mm	mm	mm	kg			
3AH5 272-1	800	210		0	0	3	16	36	17.9	40/ 42	125	50	3.8	200	190	215	175	55	3M 441 00660	4	3.1
3AH5 272-2	1250	210		0	0	3	16	36	17.9	40/ 42	125	50	3.8	200	190	215	175	55	3M 441 00660	4	3.1
3AH5 273-2	1250	210		0	0	3	20	36	22.4	50/ 52	125	50	3.8	200	190	215	175	55	3M 441 00662	5	3.1
3AH5 273-4	2000	210	•	0	0	3	20	36	22.4	50/ 52	125	50	2.2	200	190	227	175	80	3M 441 00663	5	3.1
3AH5 273-6	2500	210		0	0	3	20	36	22.4	50/ 52	125	50	2.2	200	190	227	175	80	3M 441 00663	5	3.1
3AH5 274-2	1250	210		0	0	3	25	36	28	63/ 65	125	50	3.8	200	190	260	175	55	3M 441 00662	7	3.1
3AH5 274-6	2500	210		0	0	3	25	36	28	63/ 65	125	50	2.2	200	190	227	175	80	3M 441 00663	7	3.1
3AH5 282-1	800	275		0	0	3	16	36	17.9	40/ 42	125	50	3.8	200	190	180	175	55	3M 441 00661	4	3.2
3AH5 282-2	1250	275		0	0	3	16	36	17.9	40/ 42	125	50	3.8	200	190	180	175	55	3M 441 00661	4	3.2
3AH5 283-2	1250	275	•	0	0	3	20	36	22.4	50/ 52	125	50	3.8	200	190	165	175	55	3M 441 00664	5	3.2
3AH5 283-4	2000	275		0	0	3	20	36	22.4	50/ 52	125	50	2.2	200	190	135	175	80	3M 441 00668	5	3.3
3AH5 283-6	2500	275	•	0	0	3	20	36	22.4	50/ 52	125	50	2.2	200	190	135	175	80	3M 441 00668	5	3.3
3AH5 284-2	1250	275		0	0	3	25	36	28	63/ 65	125	50	3.8	200	190	165	175	50	3M 441 00664	7	3.2
3AH5 284-6	2500	275		0	0	3	25	36	28	63/ 65	125	50	2.2	200	190	135	175	80	3M 441 00668	7	3.34

■ Standard according to IEC 62271-100 O Possible

Operating cycle diagram and dimension drawings 17.5 kV

Operating cycle diagram and dimension drawings 24 kV

The permissible number of electrical operating cycles is shown as a function of the breaking current (r.m.s. value). All vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100. The curve shape beyond the parameters defined in IEC 62271-100 is based on average experience data. The number of operating cycles that can actually be reached can be different depending on the respective application.

Barrier for pole-center distance of 210 mm

Dimension drawing	a mm	b mm	c mm
3.1	210	534	592
3.2	275	650	708
3.3	275	690	708

Siemens HG 11.05 · 2007 29

36 kV 50/60 Hz			:e: C	CO		ion	ing current	breaking current	current	ng current	withstand voltage	wer-frequency	en connections at DC 100 A)	ance,	distance,				ving	No. (see below)	ring No. (see below)
Order No.	Rated normal current	Pole-center distance	Rated operating sequence: 0 - 3 min - C0 - 3 min - C0	0 - 0.3 s - CO - 3 min - C	0 - 0.3 s - CO - 15 s - CO	Rated short-circuit duration	Rated short-circuit breaking current	DC component in % of the rated short-circuit breaking	Asymmetrical breaking current	Rated short-circuit making current (at 50/60 Hz)	Rated lightning impulse withstand voltage	Rated short-duration power-frequency withstand voltage	Voltage drop ΔU between connections (according to IEC 60694 at DC 100 A)	Minimum creepage distance, interrupter	Minimum creepage dist phase-to-earth	Minimum clearance, phase-to-phase	Minimum clearance, phase-to-earth	Weights	Detailed dimension drawing (has to be ordered)	Operating cycle diagram No. (see below)	Catalog dimension drawing No.
	I _r					t _k	$I_{\rm sc}$			I _{ma}	Up	Ud									
	А	mm				s	kA	%	kA	kA	kV	kV	mV	mm	mm	mm	mm	kg			
3AH5 312-2	1250	350		0	0	3	16	36	28	40/ 42	170	70	3.0	240	310	256	300	85	3M 441 00910	3	4.2
3AH5 314-2	1250	350		0	0	3	25	36	28	63/ 65	170	70	3.0	240	310	256	300	85	3M 441 00910	1	4.2
3AH5 314-4	2000	350		0	0	3	25	36	28	63/ 65	170	70	2.5	240	310	256	300	110	3M 441 00676	1	4.3
3AH5 322-2	1250	275		0	0	3	16	36	28	40/ 42	170	70	3.0	240	310	256	300	75	3M 441 00990	3	4.1
3AH5 324-2	1250	275		0	0	3	25	36	28	63/ 65	170	70	3.0	240	310	256	300	75	3M 441 00990	1	4.1

Standard according to IEC 62271-100 O Possible

Operating cycle diagram and dimension drawings 36 kV

The permissible number of electrical operating cycles is shown as a function of the breaking current (r.m.s. value). All vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100. The curve shape beyond the parameters defined in IEC 62271-100 is based on average experience data. The number of operating cycles that can actually be reached can be different depending on the respective application.

C A eps

Value in brackets for 2000 A

-	С	

Dimension drawing	a mm	b mm	c mm
4.1	275	650	708
4.2	350	810	868
4.3	350	844	868

Operating times

Operating times at rated voltage of the secondary circuit	Equipment of circuit-breaker	Operating time of circuit-breaker
Closing time		< 75 ms ¹⁾
Opening time	1 st shunt release	< 65 ms ¹⁾
	2 nd release	< 50 ms
Arcing time		< 15 ms
Opening time	1 st shunt release	< 80 ms
	2 nd release	< 65 ms
Dead time		300 ms
CLOSE/OPEN contact time	1 st shunt release	< 75 ms
	2 nd release	< 60 ms
Minimum command duration	Closing solenoid	45 ms
	1 st shunt release	40 ms
	2 nd release	20 ms
Pulse time for circuit-breaker tripping signal	1 st shunt release	> 15 ms
	2 nd release	> 10 ms
Charging time for electrical operation		< 15 s
Synchronism error between the poles		$\leq 2 \text{ ms}$

1) Shorter operating times on request

Short-circuit protection of motors (fuse protection of drive motors)

Rated voltage of the motor	Operating vo	Itage	Power consum of the motor	ption	Smallest possible rated current ²⁾ of the m.c.b. (miniature circuit-breaker) with C-characteristic
V	max. V	min. V	W (at DC)	VA (at AC)	А
DC 24	26	20	350	-	8
DC 48	53	41	350	-	6
DC 60	66	51	350	-	4
DC 110	121	93	350	-	2
DC 220	242	187	350	-	1.6
AC 110	121	93	-	400	2
AC 230	244	187	-	400	1.6

2) The current inrush in the drive motor can be neglected due to its very short presence

Consumption data of releases

Release	Power consumption		Tripping ranges					
	Operation at		Tripping voltage	Tripping voltage or tripping current				
	DC approx. W	AC 50/60 Hz approx. VA	at DC	at AC 50/60 Hz				
Closing solenoid 3AY15 10	140	140	85 bis 110 % U	85 bis 110 % U				
1st shunt release (without energy store) 3AY15 10	140	140	70 bis 110 % <i>U</i>	85 bis 110 % U				
2 nd shunt release (without energy store) 3AY11 01	70	50	70 bis 110 % U	85 bis 110 % U				
Undervoltage release 3AY11 03	20	20	35 bis 0 % U	35 bis 0 % U				
Current-transformer operated release 3AX11 02 (rated current 0.5 or 1 A)	-	10 ³⁾	-	90 bis 110 % <i>I</i> a				
Current-transformer operated release $3AX1104$ (tripping pulse ≥ 0.1 Ws)	-	-	-	-				

3) Consumption at pickup current (90 % of the rated current) and open armature

Basic equipment Manual closing Manual opening without wiring

Additional equipment

-X0-

1) Only upon order, for combination possibilities see "Selection of secondary equipment"

Legend

- HA
- ΗE
- Manual opening Manual closing Contactor (anti-pumping) K1
- M1 P Motor operating mechanism Energy store
- R1 Resistance
- S1 Auxiliary switch

- S21, Position switch
 S22 (to de-energize the motor operating mechanism often shoreing)
- after charging)
- S3 Position switch
 - (opens when closing spring is charged)

S4	Position switch

- (indicates the charging state) Circuit-breaker tripping S6
- signal S7 Cutout switch for circuitbreaker tripping signal
- X0
- Y6
- Lower part of plug Low-energy current-transformer operated release Y7 Undervoltage release
- Y9 Closing solenoid

Page

Brandenburger Tor, Berlin, Germany

Switchgear Factory in Berlin, Germany

Contents

Annex	33
Inquiry form	34
Configuration instructions	35
Configuration aid	Foldout page

Please copy and return to your Siemens partner or you can use our prompted online configurator under www.siemens.com/energy

Inquiry concerning

□ 3AH5 circuit-breaker

Please

□ Submit an offer

□ Call us

□ Visit us

Your address

Company
Dept.
Name
Street
De stal es de laite
Postal code/city

Phone

Fax

E-mail

Siemens AG

Dept.

Name

Street

Postal code/city

Fax

Technical data

lechnical data				Other values
Rated voltage	□ 12 kV □ 24 kV	□ 17.5 kV □ 36 kV		□kV
Rated lightning impulse withstand voltage	□ 75 kV □ 125 kV	□ 95 kV □ 170 kV		□kv
Rated short-duration power-frequency withstand voltage	□ 28 kV □ 50 kV	□ 38 kV □ 70 kV	□ 42 kV	□ kV
Rated short-circuit breaking current	□ 13.1 kA □ 25 kA	□ 16 kA □ 31.5 kA	□ 20 kA	□ kA
Rated normal current	□ 800 A □ 2000 A	□ 1250 A □ 2500 A		□A
Pole-center distance	□ 160 mm	🗆 210 mm	□ 275 mm	□ 350 mm

Secondary equipment

-

For possible combinations see pages 15 to 20

Circuit-breaker equipment	 Manual spring-operated mechanism Manual operating stored-energy mechanism Motor operating stored-energy mechanism 									
Motor operating mechanism	□VDC		□V AC,Hz							
Closing solenoid	□VDC		□V AC,Hz							
1 st shunt release	□VDC		□V AC,Hz							
2 nd shunt release	□VDC		□VAC,Hz							
Current-transformer operated release	□ 0.5 A	□ 1 A	$\Box \ge 0.1 \text{ Ws } 10 \Omega \Box \ge 0.1 \text{ Ws } 20 \Omega$							
Undervoltage release	□VDC		□V AC,Hz							
Auxiliary switch	□ 2 NO + 2 NC	□ 6 NO + 6 NC	□ 12 NO + 12 NC							
Low-voltage connection	□ without	24-pole terminal strip	□ 24-pole plug □ 64-pole plug							
Mechanical interlocking										
Counter										
Circuit-breaker tripping signal										
Electrical closing lock-out										
Operating instructions	🗆 English	🗆 German	□ French □ Spanish							

Application and other requirements

□ Please check off

You prefer to configure your 3AH5 vacuum circuit-breaker on your own? Please follow the steps for configuration and enter the order number in the configuration aid.

Please follow the steps for configuration and enter the order number in the configuration aid. Alternatively you can also use our prompted online configurator under www.siemens.com/energy

Instruction for configuration of the 3AH5 vacuum circuit-breaker

1st step: Definition of the primary part (see pages 13 and 14)

Please specify the following ratings:	Possible options:
Rated voltage (U _r)	U _r : 12 kV, 17.5 kV, 24 kV, 36 kV
Rated lightning impulse withstand voltage (U _p)	U _p : 75 kV, 95 kV, 125 kV, 170 kV
Rated short-duration power-frequency withstand voltage (U_d)	U _d : 28 kV, 38 kV, 42 kV, 50 kV, 70 kV
Rated short-circuit breaking current (I_{sc})	I _{sc} : 13.1 kA, 16 kA, 20 kA, 25 kA, 31.5 kA
Pole-center distance	160 mm, 210 mm, 275 mm, 350 mm
Rated normal current (<i>I</i> _r)	<i>I</i> _r : 800 A, 1250 A, 2000 A, 2500 A

These ratings define the positions 5 to 8 of the order number

2nd step: Definition of the secondary equipment (see pages 15 to 19)

<u>Please specify the following equipment features:</u>	Possible options:
Release combination (position 9)	Shunt release, current-transformer operated release and undervoltage release
Closing solenoid (position 10)	Operating voltages from 24 V DC to 240 V AC
Operating voltage of the releases (positions 11/12)	Operating voltages from 24 V DC to 240 V AC
Equipment with circuit-breaker tripping signal (position 13)	Equipment depends on the selection of the secondary connection
Type of operating mechanism and operating voltage of a motor, if available (position 14)	Manual spring-operated mechanism, manual operating stored-energy mechanism, motor operating stored-energy mechanism with operating voltages from 24 V DC to 240 V AC
Number of auxiliary contacts (position 15)	2 NO + 2 NC, 6 NO + 6 NC, 12 NO + 12 NC
Design of the secondary connection (position 15)	24-pole terminal strip, 24-pole plug connector, 64-pole plug connector, without connection system
Language of the documentation (position 16)	English, German, French, Spanish
Frequency of the operating voltage of the secondary equipment at AC (position 16)	50 Hz/60 Hz

These equipment features define the positions 9 to 16 of the order number

3rd step: Do you have any further requirements concerning the equipment? (Please refer to page 20)

Should you still need more options than the possible special equipment like halogen-free and flame-retardant or silicone-free version, condensate protection or an additional rating plate, etc., please contact your responsible sales partner.

1	2 A	3 H	4	5	6	7	-	8	9	10	11	12	-	13	14	15	16	Ζ
5	~		5			~		-	_									2
					e 13				e 15	e 16	e 16	e 17		e 18	e 18	e 19	e 19	e 20
					See page 13	and	Page 14		See page 15	See page 16	See page 16	See page 17		See page 18	See page 18	See page 19	See page 19	See page 20
					S	ø	4		S	S	S	S		S	S	S	S	C.
3	٨		-															
2	A	п	5	+			-	+				+	-			+		
				+				+				+				+		
3	Α	н	5				-						-					
				+				+				+				+		
				+				+				+				+		
3	Α	Η	5				-						-					
				+				+				+				+		
-				+				+				+				+		
3	A	н	5				-						-					
				+				+				+				+		
3	Α	н	5				-						-					
				+				+				+				+		
				+				+				+				+		
3	Α	Н	5				-						-					
				+				+				+				+		
_												+						
3																		
												+						
3																		
												+						
												+						
3	Α	Н	5				-						-					
				+				+				+				+		
				+				+				+				+		

If not stated otherwise on the individual pages of this catalog, we reserve the right to include modifications, especially regarding the stated values, dimensions and weights. Drawings are not binding. All product designations used are trademarks or product names of Siemens AG or other suppliers. If not stated otherwise, all dimensions in this catalog are given in mm.

Responsible for

<u>Technical contents:</u> Siemens AG, Dept. PTD M C PPM Berlin <u>General editing:</u> Siemens AG, Dept. PTD CC M Erlangen Siemens AG Power Transmission and Distribution Medium Voltage Division Nonnendammallee 104 13623 Berlin Deutschland

www.siemens.com/energy

For questions concerning Power Transmission and Distribution: You can contact our Customer Support Center 24 hours a day, 365 days a year. Tel.: +49 180/524 70 00 Fax: +49 180/524 24 71 (*Calls charged: e.g. 12 Ct/min*) E-Mail: support.energy@siemens.com www.siemens.com/energy-support Subject to change without notice Order No. **E50001-K1511-A051-A1-7600** Printed in Germany Dispo 31601 KG 02.07 7.0 32 En 102303 6101/C6137

The information in this document contains general descriptions of the technical options available, which do not always have to be present in individual cases. The required features should therefore be specified in each individual case at the time of closing the contract.