Medium Voltage Distribution

SM6-36

Modular units

Catalogue
 April 2009

A new path for achieving your electrical installations

A comprehensive offer

The SM6-36 range is part of a comprehensive offer of products that are perfectly coordinated to meet all medium and low voltage electrical distribution requirements. All of these products have been designed to work together: electrical, mechanical and communication compatibility.
The electrical installation is thus both optimised and has improved performance:

- better service continuity,
- increased personnel and equipment safety,
- guaranteed upgradeability,
- efficient monitoring and control.

You therefore have all the advantages at hand in terms of know-how and creativity for achieving optimised, safe, upgradeable and compliant installations.

Tools for facilitating the design and installation

With Schneider Electric, you have a complete range of tools to help you get to know and install the products whilst complying with current standards and good working practices. These tools, technical sheets and guides, design software, training courses, etc are regularly updated.

Schneider Electric is associating itself with your know-how and your creativity to produce optimised, safe, upgradeable and compliant installations

For a real partnership with you

A universal solution doesn't exist because each electrical installation is specific. The variety of combinations on offer allows you to truly customise the technical solutions. You are able to express your creativity and put your know-how to best advantage when designing, manufacturing and exploiting an electrical installation.
Presentation 2
Field of application 6
Units for all functions 7
Operating conditions 10
Main characteristics 11
Description 12
SF6 switchgear 15
Safety of people 17
Remote control switch interface 19
Fault indicators 20
Ammeter 21
Description of the control/monitoring and protection functions 22
Functional units selection 23
Automatic switching controls 33
Network remote control and monitoring 36
Operating mechanisms 37
Auxiliaries selection 40
Instrument transformers 41
Interlocks 43
Transformer protection 46
Connections 47
Installation 48
Order form 51

The Schneider Electric group's experience extends over forty years in factory-built cubicles and over twenty five years in SF6 technology for Medium Voltage switchgear.
This experience means that today Schneider Electric can propose internal arc cubicles 16 kA 1 s to reinforce the safety of people.
This gives you the advantage of unique experience, that of a world leader, with over 2,000,000 SF6 Medium Voltage units installed throughout the world.
Putting this experience at your service and remaining attentive to your requirements is the spirit of active partnership that we want to develop in offering you the SM6-36 range.

The modular SM6-36 is a range of harmonised cubicles equipped with SF6 technology switchgear with 30 years life span.
These cubicles allow you to produce all your Medium Voltage substation requirements from 10 kV to 36 kV by superposing their various functions.
The result of in-depth analysis of your requirements, both now and in the future, SM6-36 cubicles mean that you can take advantage of all the features of both a modern and proven technology.

Ease and safe to operate

SM6-36, a proven range

■ a three position switch to block incorrect switching
■ the earthing disconnector has full closing capacity

- positive breaking of position indicators
- internal arc withstand in the cable and switchgear compartments
- clear and animated display diagrams
- switching lever with an "anti-reflex" function

■ compartmented cubicles.

SM6-36: a range designed with telecontrol in mind

SM6-36 switchgear is perfectly adapted to telecontrol applications. Motorised, either when installed or at a later date on-site without any interruption in service, SM6-36 combines with the Easergy T200 remote control interface. You therefore benefit from a ready-to connect unit that is easy to incorporate providing guaranteed switchgear operation.

SM6-36: a range with adapted protection devices

With the SM6-36, Schneider Electric proposes solutions for network management the Sepam and VIP or relay ranges protect installations, providing continuity of electrical supply and reducing downtime.

Schneider Electric's environment policy

Schneider Electric is committed to a long term environmental approach.
As part of this, the SM6-36 has been designed to be environmentally friendly, notably in terms of the product's recycleability.
The materials used, both conductors and insulators, are identified and easily separable.
At the end of its life, SM6-36 can be processed, recycled and its materials recovered in conformity with the draft European regulations on the end-of-life of electronic and electrical products, and in particular without any gas being released to the atmosphere nor any polluting fluids being discharged.

SM6-36 is compliant with the RoHS directive. RoHS restricts the use of six hazardous materials in the manufacture of various types of electronic and electrical equipment.

The environmental management system adopted by Schneider Electric production sites that produce the SM6-36 have been assessed and judged to be in conformity with requirements in the ISO 14001: 2004 standard.

Quality assurance Quality certified to ISO 9001

A major advantage

Schneider Electric has integrated a functional organisation into each of its units. The main mission of this organisation is to check the quality and the compliance with standards.
This procedure is:

- uniform throughout all departments
- recognised by many customers and approved organisations.

But it is above all its strict application that has enabled recognition to be obtained by an independent organisation:
The French Quality Assurance Association (FQAA).
The quality system for the design and manufacture of SM6-36 units has been certified in conformity with the requirements of the ISO 9001: 2000 quality assurance model.

㔛
$\stackrel{y}{2}$

Meticulous and systematic controls

During manufacture, each SM6-36 is subject to systematic routine testing which aims to check the quality and conformity:

- sealing testing
- filling pressure testing
- opening and closing rate testing

■ switching torque measurement

- dielectric testing

■ conformity with drawings and plans.
The results obtained are written and reported on the test certificate for each device by the quality control department.

The environmental management system adopted by Schneider Electric production sites that produce the SM6-36 have been assessed and judged to be in conformity with requirements in the ISO 14001 standard.

Unit definitions

Below is the list of SM6-36 range units used in MV/LV transformer substations and industrial distribution substations:
■ IM, IMC, IMB switch

- PM fused switch

■ QM, QMC, QMB fuse-switch combination
■ DM1-A, DM1-D single-isolation SF6 type circuit breaker
■ DM1-W withdrawable single-isolation
SF6 type circuit breaker
■ DM2 double-isolation SF6 type circuit breaker
■ DM2-W withdrawable double-isolation SF6 type circuit breaker

- CM, CM2 voltage transformers

■ GBC-A, GBC-B current and/or voltage measurements

- NSM-cables for main incoming and standby

■ NSM-busbars for main incoming and cables
for standby

- GIM intermediate bus unit
- GBM connection unit

■ GAM2, GAM incoming cable connection unit

- SM disconnector
- TM MV/LV transformer unit for auxiliaries

■ other units, consult us.

The SM6-36 is made up of modular units containing fixed or withdrawable metal-enclosed SF6 switchgear, using sulphur hexafluoride (SF6):
■ switch-disconnector
■ SF1 circuit breaker

- disconnector.

SM6-36 units are used for the MV section in MV/LV transformer substations in public distribution systems and MV consumer or distribution substations from 10 kV to 36 kV .

MV/LV transformer substations

MV consumer substation
(MV metering)

Outgoing line toward
other ring substations
MV consumer substation
(MV metering)

Incoming line of the main distribution switchboard

Connection to the networks

Incoming or outgoing switch unit IM (750 mm)

Incoming or outgoing switch unit IMC (750 mm)

Fuse-switch combination unit right or left outgoing line QMB (750 mm)

Switch unit right or left outgoing line IMB (750 mm)

Fuse-switch combination unit QMC (1000 mm)

Fuse-switch unit PM (750 mm)

SF6 circuit-breaker protection

MV metering

Casings

Connection unit right or left outgoing line GBM (750 mm)

Intermediate bus unit GIM (250 mm)

Other functions

Disconnector unit SM (750 mm)

Cables power supply for main incoming line and standby line NSM-cables (1500 mm)

MV/LV transformer unit for auxiliaries TM (750 mm)

Busbars power supply for main incoming line on right or left and cables
for standby line
NSM-busbars (1500 mm)

In addition to its technical characteristics, SM6-36 meets requirements concerning safety of life and property as well as ease of installation, operation and protecting the environment.

SM6-36 units are designed for indoor installations (IP3X).
Their compact dimensions are:

- 750 mm to 1500 mm width
- 2250 mm height
- 1400 mm depth...
. this makes for easy installation in small rooms or prefabricated substations. Cables are connected via the front. All control functions are centralised on a front plate, thus simplifying operation. The units may be equipped with a number of accessories (relays, toroids, instrument transformers, low power current transformers (with Sepam only), surge arrester, telecontrol, etc.).

Standards

SM6-36 units meet all the following recommendations, standards and specifications:

- IEC recommendations

62271-1: Common specifications for high-voltage switchgear and controlgear standards.
62271-200: A.C. metal-enclosed switchgear and controlgear for rated voltage above 1 kV and up to and including 52 kV .
60265-1: High voltage switches for rated voltages above 1 kV and less than 52 kV . 62271-105: High voltage alternating current switch-fuse combinations.
62271-100: High-voltage alternating current circuit breakers.
62271-102: High-voltage alternating current disconnectors and earthing switches.
60282-1 : High voltage fuses.
60255 : Protection relays (Sepam).
60044-1 : Current transformers.
60044-2 : Voltage transformers.

Designation

SM6-36 units are identified by a code including:

- an indication of the function, i.e. the electrical diagram code: IM, QM, DM1, CM,

DM2, etc.
■ the rated current (Ir): 400-630-1250 A

- the rated voltage (Ur): 36 kV
- the maximum short-time withstand current values (lk):
12.5-16-20-25 kA, time duration (tk) 1 s
- the colour is of RAL 9002 type (grey white).

Example for a unit designated: IM 630-36-12.5

- IM indicates an "incoming" or "outgoing" unit
- 630 indicates the rated current is 630 A
- 36 indicates the rated voltage is 36 kV
- 12.5 indicates the short-time withstand current is 12.5 kA 1 s .

The hereunder values are for working temperatures from $-5^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}$ and for a setting up at an altitude below 1000 m .

Internal arc withstand

■ 16 kA, $1 \mathrm{~s}, \mathrm{IAC}: \mathrm{A}-\mathrm{FL}$
in accordance with IEC 62271-200.

Protection index

■ Units: IP3X

- Between compartments: IP2XC

■ Partition class: PI (non-metallic)
■ Loss of service continuity classes: LSC2A.

Temperatures

The cubicles must be stored in a dry area free from dust and with limited temperature variations.

- For stocking: from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- For working: from $-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
- Other temperatures, consult us.

General characteristics

Rated voltage		Ur	kV	36	
Insulation level					
50/60 Hz, 1 min	Insulation	Ud	kV rms	70	
	Isolation	Ud	kV rms	80	
1.2/50 $\mu \mathrm{s}$	Insulation	Up	kV peak	170	
	Isolation	Up	kV peak	195	
Breaking capacity					
Rated current		Ir	A	630	1250
Units	Mainly active load		A	630	-
IM, IMC, IMB	Transformer off load		A	16	
	Cables off load		A	50	
QM, PM, QMB, QMC		11	kA	20	-
DM1-A, DM1-D, DM1-W, DM2, DM2-W		Isc	kA	20	25
Short-time withs	d current	Ik/tk	kA/1 s 16	\square	\square
			$\underline{20}$	\square	\square
			25	-	\square

The making capacity is equal to 2.5 times the short-time withstand current.
Endurance

Units		Mechanical endurance	Electrical endurance
SM	Disconnector	$\begin{aligned} & \text { IEC } 62271-102 \\ & 1000 \text { operations } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { IM, IMC, IMB, } \\ & \text { PM, } \end{aligned}$	Switch	$\begin{aligned} & \text { IEC } 60265 \\ & 1000 \text { operations } \\ & \text { class M1 } \\ & \hline \end{aligned}$	IEC 60265 100 breaks at Ir, p.f. $=0.7$, class E3
QM, QMB, QMC	Switch-fuse	IEC 60265 1000 operations class M1	IEC 60265 100 breaks at Ir, p.f. $=0.7$, class E3
			IEC 62271-105 with 63 A fuses 3 breaks at transfer 800 A p.f. $=0.2$
DM1-A, DM1-D, DM1-W, DM2, DM2-W	Disconnector	IEC 62271-102 1000 operations	
	SF circuit breaker	IEC 62271-100 10000 operations class M2	IEC 62271-100 25 breaks at 25 kA 10000 breaks at Ir, p.f. $=0.7$, class E2

Electromagnetic compatibility

Emission tests

- Radiated disturbances
- CISPR 11: 2004
- IEC 60694: 1996, clause 6.9.1
\square Quasi-peak values within the frequency range $30-1000 \mathrm{MHz}$ for both horizontal and vertical polarizations of the antenna. Limits increased with 10 dB , due to 3 meters measuring distance.
\square Electronic equipment fulfilled the requirements.

Immunity tests

- Impulse voltage
- IEC 60694: 1996, clause 6.9.2
- IEC 255-5, clause 8
\square Secondary systems subjected $\pm 5 \mathrm{kV}$ impulses, 3 times at 10 s intervals
\square Secondary equipment still fully operative.
- Electrical fast transient/burst
- IEC 61000-4-4: 2000
- IEC 60694: 1996, clause 6.9.2
\square Secondary systems subjected $\pm 2 \mathrm{kV}$ impulses for 1 min.
\square Criterion: 2.
■ Oscillatory wave immunity
- IEC 61000-4-12: 2001
- IEC 60694: 1996, clause 6.9.2
\square Secondary systems subjected:
- $\pm 1 \mathrm{kV} 100 \mathrm{kHz}$ damped oscillatory waves 5 times at 10 s intervals
- $\pm 2.5 \mathrm{kV} 100 \mathrm{kHz}$ damped oscillatory waves 5 times at 10 s intervals
\square Criterion: 2.

Switch cubicles

1 Switchgear: switch-disconnector and earthing switch in an enclosure filled with SF6 and satisfying "sealed pressure system" requirements.
2 Busbars: all in the same horizontal plane, thus enabling later switchboard extensions.
3 Connection: accessible through front, connection to the lower switch-disconnector and earthing switch terminals (IM cubicles) or the lower fuse-holders (PM and QM cubicles).
This compartment is also equipped with an earthing switch downstream from the MV fuses for the transformer protection units (QM cubicles).
4 Operating mechanism: contains the elements used to operate the switch-disconnector and earthing switch and actuate the corresponding indications (positive break). The operating functions may be motorized (optional).
5 Low voltage: installation of a terminal block (if motor option installed), LV fuses and compact relay devices.

SF6 circuit breaker cubicles

1 Switchgear: disconnector(s) and earthing switch(es), in enclosures filled with SF6 and satisfying "sealed pressure system" requirements.
2 Busbars: all in the same horizontal plane, thus enabling later switchboard extensions.
3 Connection and switchgear: accessible through front, connection to the downstream terminals of the SF1 circuit breaker.
4 Operating mechanism: contains the elements used to operate the disconnector(s), the circuit breaker and the earthing switch and actuate the corresponding indications. The circuit breaker operating functions may be motorized (optional).
5 Low voltage: installation of compact relay devices and test terminal boxes. If more space is required, an additional enclosure may be added on top of the cubicle.

Cubicles are made up of three compartments separated by metal or insulating partitions, operating mechanism cabinets and low voltage cabinet.

This cabinet contains the various operating functions for the switch, the circuit breaker, the earthing switch and the voltage presence indicator.
The operating-mechanism compartment for the switch, earthing switch may be accessed with the cables and busbars energised and without isolating the substation. It also enables easy installation of padlocks, locks and standard LV accessories (auxiliary contacts, trip units, motors, etc.).

Switchgear compartment

This compartment is separated from the busbar compartment and the connection compartment by the enclosure surrounding the switch, and the earthing switch.

Operating-mechanism cabinet

Low-voltage cabinet

Busbar compartment

The three insulated busbars are parallel-mounted. Connection is made to the upper pads of the enclosure. Rating 630-1250 A.

Connection (cable) compartment

The network cables are connected to the terminals of the switch, of the circuit breaker and the earthing switch. Transformer cables are connected to the lower fuse holder.

Cables may have either:

■ simplified terminations for dry-type one-core cables heat-shrink ends for dry-type or paper-insulated cables. With basic equipment, the maximum allowable crosssection for cables is:
■ $240 \mathrm{~mm}^{2}$ for incoming or outgoing cubicles

- $95 \mathrm{~mm}^{2}$ for transformer protection cubicles incorporating fuses.
The earthing switch must be closed before the cubicle may be accessed. The reduced depth of the cubicle makes for easy connection of all phases.
A stud incorporated in the field distributor makes it possible to position and secure the cable-end lug with a single hand.

Switch and earthing switch

The three rotating contacts are placed in an enclosure filled with gas to a relative pressure of $1.5 \mathrm{bar}(1500 \mathrm{hPa})$.
This system offers maximum operating reliability.

- gas tightness

The enclosure filled with SF6 gas satisfies "sealed pressure system" requirements and seal tightness is always checked in the factory.

- operating safety

- the switch may be in one of three positions: "closed", "open" or "earthed", representing a natural interlocking system that prevents incorrect operation. Moving-contact rotation is driven by a fast-acting mechanism that is independent of the action of the operator
\square the device combines the breaking and disconnection functions
\square the earthing switch placed in the SF6 has a short-circuit making capacity, in compliance with standards
\square any accidental over-pressures are eliminated by the opening of the safety membrane, in which case the gas is directed toward the back of the unit, thus avoiding projection or other related phenomena in front.

- breaking principle

The exceptional qualities of SF6 gas are used to extinguish the electrical arc. To increase cooling of the arc, a rotative movement is created between the arc and the gas. The arc appears when the fixed and moving contacts separate. The combination of the current and a magnetic field created by a permanent magnet provokes arc rotation around the fixed contact, resulting in arc extension and cooling unit it is extinguished at current zero.
The distance between the fixed and moving contacts is then sufficient to withstand the recovery voltage.
This system is both simple and sure and also provides improved electrical endurance due to very low wear on contacts.

SF6, the switchgear manufacturer's gas

SM6-36 switch-disconnectors and earthing switches use sulphur hexafluoride gas (SF6) for insulation and breaking. The active parts are placed in an insulating enclosure in accordance with the definition of IEC 56/Appendix EE (1987 edition) for sealed pressure systems.
SM6-36 devices offer remarkable characteristics:

- long service life (30 years)
- maintenance-free active parts
- high electrical endurance
- very low overvoltage level
- operating safety.

SF1 circuit breaker

1 Enclosure
2 Bottom cover
3 Operating shaft
4 Main moving contact
5 Moving arcing contact
6 Fixed arcing contact
7 Compression chamber
9 Moving piston
10 Valves
11 Insulating nozzle

SF1 circuit breaker

The SF1 circuit breaker is made up of three separate pole mounted on a structure supporting the operating mechanism. Each pole-unit houses all the active elements in an insulating enclosure filled with gas to a relative pressure of 2 max bar. This system offers maximum operating reliability:

\square gas tightness

The enclosure filled with SF6 gas satisfies "sealed pressure system" requirements and seal tightness is always checked in the factory.

■ operating safety

As for switch-units, accidental over-pressures are eliminated by the opening of the safety membrane.

■ breaking principle

The circuit breaker is based on the SF6 gas autocompression principle.
The inherent qualities of SF6 and the soft break resulting from this technique reduce switching over-voltages.

■ precompression

When the contacts begin to open, the piston slightly compresses the SF6 gas in the pressure chamber.

■ arcing period

The arc then forms between the arcing contacts and the piston continues its downward movement. A small quantity of gas, directed by the insulating nozzle, is injected into the arc.
The cooling of the arc is thus achieved through forced convection for the interruption of low currents, however, during the interruption of high currents, thermal expansion is responsible for the transfer of the hot gases toward the cold parts of the pole unit. Toward current zero, the distance between the two arcing contacts is sufficient for final interruption of the current due to the dielectric properties of the SF6 gas.
■ sweeping over-stroke
The moving parts finish their travel whereas the cold gas injection continues until the contacts are completely open.

Contacts closed

Precompression

Arcing period

Contacts open

Safety of people
 By operatingmechanismsafety

Reliable operating mechanism

Switchgear status indicator
Fitted directly to the mobile equipment's shaft, these give a definite indication of the switchgear's position (IEC 62271-102 appendix A).
Operating lever
This is designed with an anti-reflex device that stops any attempt to re-open the device immediately after closing the switch or the earthing disconnector.

Locking device

Between one and three padlocks enable the following to be locked:
■ access to the switching shaft of the switch or the circuit breaker
\square access to the switching shaft of the earthing disconnector

- operating of the opening release push-button.

Simple and effortless switching

Mechanical and electrical controls are side by side on the front fascia, on a panel including the schematic diagram indicating the device's status (closed, open, earthed).
Closed
The mobile equipment is operated via a quick acting mechanism, independent of the operator. No energy is stored in the switch, apart from when switching operations are taking place.
For combined switch fuses, the opening mechanism is armed at the same time as the contacts are closed.

Opening

The switch is opened using the same quick acting mechanism, operated in the opposite direction.
For circuit breakers and the combined switch fuses, opening is controlled by:

- a push-button
- a fault.

Earthing
A specific control shaft enables the opening or closing of the earthing contacts. Access to this shaft is blocked by a cover that can be slid back if the switch is open but which remains locked in place if it is closed.

Voltage presence indicator

This device has integrated VPIS (Voltage Presence Indicating System) type lights, in conformity with IEC standard 61958, enabling the presence (or absence) of voltage to be checked on the cables.

Insensitivity to the environment

- an internal sealed enclosure, contains the active parts of the switchgear (switch, earthing disconnector). It is filled with SF6 in accordance with the definitions in IEC recommendation 62271-200 for "sealed pressure systems"
■ sealing is systematically checked in the factory
- parts are designed in order to obtain optimum electrical field distribution
- the metallic structure of cubicles is designed to withstand and aggressive environment and to make it impossible to access any energised part when in operation.

[^0]
Safety of people
 By internal arc protection (optional)

Standard IEC 62271-200 appendix A indicates a method for testing switchgear in metal enclosures under internal arc conditions. The aim of this test is to show that an operator situated in front of or on the side of a switchboard would be protected against the effects of an internal fault.

Case of an SM6-36 switchboard installed against the wall exhaust: 3-sides internal arc protection

To enhance the safety of people, it is desirable to provide as high a degree of protection as possible by evacuating the effects of internal arc using:

- evacuation systems which direct gases towards the top or the bottom of the switchboard enabling over pressure to be limited in the case of an internal fault in the compartments
■ channelling and evacuating hot gases towards an external area, which is not hazardous for the operator
- materials which are non-inflammable in the cubicles
- reinforced panels.

Consequently:

The SM6-36 is designed to offer a good level of safety
■ Control of the architecture:

- compartment type enclosure.
- Technological control:
\square electrotechnical: modelling of electrical fields,
\square mechanical: parts produced using CAD/CAM systems.
■ Use of reliable components:
- choice of materials,
\square earthing switch with closing capacity.
- Devices for total operating safety:
\square voltage presence indicator on the front face,
- natural reliable interlocking,
\square locking using keys or padlocks.

Internal arc withstand of the cubicles

■ internal arc is optional

- IAC: A-FL 16 kA 1 s (three sides).

SM6-36 internal arc
 (in conformity with IEC 62271-200 appendix A)

In its internal arc version, the SM6-36 has successfully passed all of the type testing relative to standard IEC 62271-200 (5 acceptance criteria).
The materials used meet the constraints for which the SM6-36 is designed.
The thermal and mechanical forces that an internal arc can produce are perfectly absorbed by the enclosure.
An operator situated in the front of or on the sides of the cubicle SM6-36 switchboard during an internal fault will not be exposed to the effects of arcing.

SM6-36 proposes several options to install an internal arc enhanced switchboard

■ 3-sides internal arc protection

In case of an SM6-36 switchboard positioned against the wall, access to the rear of the cubicles is impossible, internal arc protection from three sides brings more reliability to the customers.

Way of exhaust

■ Sidewards exhaust

\square Civil engineering document for internal arc protected cubicles to be considered,
\square Civil engineering with an adequate volume is necessary.

Remote control switch interface

Easergy T200 S is a simplified MV substation control unit for secondary distribution networks enabling remote control of one or two MV substation switches. T200 S, a version of the T200 I unit, is integrated in the SM6-36 cubicle LV control cabinet.
It is limited to control 2 switches. It is intended for remote control applications for source transfer switching and back up generator set switching in NSM cubicle.

Easergy T200 S a multifunctional "plug and play" interface which integrates all functions required for remote monitoring and control of MV substations:

- acquisition of various data types: switch position, fault detectors, current values, etc.
- transmission of opening and closing orders to the switches
- exchange with the control center.

Particularly used during network incidents, Easergy T200 S has proven its reliability and availability to be able to operate the switchgear at all times. It is easy to implement and operate.

Functional unit dedicated to Medium Voltage applications

Easergy 200 S is installed in the low voltage control cabinet of IM and NSM cubicles for remote control of one or two switches.
Easergy notably enables source transfer switching between two switches. It has a simple panel for local operation to manage electrical controls (local/remote switch) and to display switchgear status information.
It integrates a fault current detector (overcurrent and zero sequence current) with detection thresholds configurable channel by channel (threshold and fault duration).

"Plug and play" and secure

Integrated in the low voltage control cabinet of an MV-equipped cubicle, it is ready to connect to the transmission system.
Easergy T200 S has been subject to severe tests on its resistance to MV electrical constraints. A back-up power supply guarantees several hours continuity of service for the electronic devices, motorization and MV switchgear.
Current transformers are of split core type for easier installation.
Compatible with all SCADA remote control systems
Easergy T200 S supplies the following standard protocols:
Modbus, DPN3.0 level 2 and IEC 870-5-101.
Transmission system standards are: RS232, RS485, PSTN, FSK.
Other systems are available on request, the radio frequency emitter/receiver is not supplied.

Control command

Local information

Power unit

Split core CTS

Back up power supply

Easergy Flair is a comprehensive range of underground network fault current indicators.

Easergy MV underground network fault current passage indicators are a range of products adapted to all neutral earthing systems: insulated, impedant and direct earthing.

- Easergy Flair 21D-22D-23D, are self-powered with a liquid crystal display, with DIN dimensions for MV cubicle installation.
- Easergy Flair 279 and 219, have a wall-mounted case for the MV cubicles substation or LV compartment and an external power supply which can be backed up. - Easergy Flair 200C (communicative), has the same case as Flair 279 and 219, but has advanced measurement functions and long distance communication features (radio, GSM, RTC, etc.).

Easergy Flair	21D-22D-23D	279-219	200C
Usage			
	Underground MV networks, open loop, insulated, impedant and direct neutral earthing systems.		
Installation			
	Flush fitted	Casing	Casing
Power supply			
	Self-powered or dual power	230 Vac or battery	230 Vac
Fault detection			
	Phase-phase and phase-earth for all 3 ranges		
Indication			
	LCD display	Indicator light	Indicator light (option)
Measurement			
	Current, frequency		Current, voltage, power
Communication			
	SCADA interface by dry contact	SCADA interface by dry contact	Long distance (radio, PSTN, GSM, etc.)

Easergy Flair 21D-22D - 23D

SM6-36 integrates Flair 21D, Flair 21DT, Flair 22D and Flair 23D on every incoming cubicles

■ High performance indicators

\square indication of phase-phase and phase-earth faults,
\square faulty phase indication,
\square adapted to all neutral earthing systems,

- compatible with HV/MV substation protection devices.

■ Clear and comprehensive display
\square displaying the faulty phase for earth fault,
\square displaying settings,
\square displaying the load current including peak demand and frequency meter.
■ Maintenance free.

		Flair 21D	Flair 21DT	Flair 22D	Flair 23D
Power supply					
	Self-powered	\square	\square	\square	■
	Dual power supply			■ (battery)	- (external)
Display					
	Ammeter	\square	■	\square	■
	Peak demand			-	\square
	Frequency meter			■	■
Options					
	SCADA interface	■ (transistor output)	\square	\square	\square
	External light	-	-	-	-
	External reset			\square	■
	Advanced settings (keypad)			\square	■

\square At the leading edge of technology, Amp 21 D is suitable for Medium Voltage network load management.

Self-powered, it ensures a permanent display of currents.

■ Compact and in DIN format, it fits naturally into MV cubicles.

■ Cost efficient, it uses the CT optimised for Fault Passage Indicator.

■ Performant, it displays phase current and maximum of current.

Easergy Amp 21D is an ammeter dedicated to display the load current on a Medium Voltage network. It is particularly suited for network load management application.

Functions

- Display of 3 phase current: I1, I2 , I3

Range: 3 A to 800 A
■ Display of 3 phase current maximeter: I1, I2, I3
Range: 3 to 800 A.

Display principle

■ Load curents are permanently displayed

- continuous scrolling of L1, then L2, then L3.
- Maximeter
\square access to maximeter display by pressing a dedicated push button
\square continuous scrolling of M1, then M2, then M3
\square reset of all maximeter by pressing a combination of two push buttons.

Technical data

Application		
Frequency		50 Hz and 60 Hz
Load current	Minimum current	$>3 \mathrm{~A}$
Measurement		
Range	Phase current	3 to 800 A
	Accuracy (<630 A)	$\pm 5 \%, \pm 2 \mathrm{~A}$
Reset of maximeter	Manual from device	Yes
Power supply		
Self power	From the current sensors	l load > 3 A
Battery		No
Auxiliary supply		No
Display		
	Display	4 digits LCD
	Current per phase	Yes (resolution 1A)
	Maximeter per phase	Yes
Sensors		
	Phase CTs	3 split core CT
Miscellaneous		
	Test	Yes
Characteristics		
Dielectric	IEC 60255-5	
Electromagnetic	IEC 61000-4-4 (level 4) IEC 61000-4-12	Insulation 10 kV Shock wave 20 kV
Climatic	Operating temperature Storage temperature Salt fog	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 200 \mathrm{~h} \end{aligned}$
Mechanical	IEC 60068-2-6 IEC 60068-2-29	Vibrations 10 to $500 \mathrm{~Hz}: 2 \mathrm{~g}$ Protection IP23

Assembly

Small size enclosure

- DIN format : $93 \times 45 \mathrm{~mm}$
- Secured, extraction-proof mounting
- Terminal connections

Current sensors

- Split core CT for mounting on MV cables (product MF1, ref 59963).

Description of the control/ monitoring and protection functions

The Sepam range of protection and metering is designed for the operation of machines and electrical distribution networks of industrial installations and utility substations for all levels of voltage.
It consists of complete, simple and reliable solutions, suited to following 4 families:

- Sepam series 10,

■ Sepam series 20,
■ Sepam series 40,
■ Sepam series 80.

Sepam protection relay

A range adapted at your application

■ Protection of substation (incoming, outgoing line and busbars).

- Protection of transformers.
- Protection of motors, and generators.

Accurate measurement and detailed diagnosis

■ Measuring all necessary electrical values.
■ Monitoring switchgear status: sensors and trip circuit, mechanical switchgear status.

- Disturbance recording.

■ Sepam self-diagnosis and watchdog.

Simplicity

Easy to install

- Light, compact base unit.
- Optional modules fitted on a DIN rail, connected using prefabricated cords.
- User friendly and powerful PC parameter and protection setting software to utilize all of Sepam's possibilities.

User-friendly

- Intuitive User Machine Interface, with direct data access.
- Local operating data in the user's language.

Flexibility and evolutivity
■ Enhanced by optional modules to evolve in step with your installation.

- Possible to add optional modules at any time.
- Simple to connect and commission via a parameter setting procedure.

Sepam	Characteristics	Protections	Applications				
		Basic					
		Specific				$\grave{\circ}$ 0 0 0 0 0 0	$\begin{aligned} & \frac{0}{\pi} \\ & \text { O} \\ & \text { O} \\ & \text { On } \end{aligned}$
Sepam series 10 For simple applications	- 4 logic inputs - 7 relay outputs 1 communication port	Phase-overcurrent and earth fault protection	$\begin{aligned} & 10 A \\ & 10 B \end{aligned}$	$\begin{aligned} & \text { 10A } \\ & 10 B \end{aligned}$			
Sepam series 20 For common applications	- 10 logic inputs- 8 relay outputs- 1 Modbus communication port	Current protection	S20	T20	M20		
		Voltage and frequency protection					B21
		Loss of mains (ROCOF)					B22
Sepam series 40 For demanding applications	- 10 logic inputs- 8 relay outputs- Modbus communication port- Logic equations editor	Current voltage and frequency protection	S40	T40	M41	G40	
		Directional earth fault and phase overcurrent	S42	T42			
Sepam series 80 For complete applications	- 42 logic inputs23 relay outputs- 2 Modbus communication portLogic equations editor- Removal memory cartridge(oggittery to save eventloging data	Current voltage and frequency protection	S80				
		Directional earth fault	S81	T81	M81		
		Directional earth fault and phase overcurrent	S82	T82		G82	

Functional units selection

Network connection

IM (750 mm)
Switch unit

IMC (750 mm)
Switch unit

IMB (750 mm)
Switch unit
Right or left outgoing

Electrical characteristics

Basic equipment:

- switch and earthing switch
- three-phase busbars
- CIT operating mechanism
- voltage presence indicator
- 150 W heating element
- connection pads for dry-type cables
three-phase bottom busbars for outgoing lines (right or left)
three CTs

Versions:

- Manual or motorised operating mechanism Cl 1 or Cl 2 with opening and closing shunt trips

Optional accessories:

```
■ motor for operating mechanism
- auxiliary contacts
■ key-type interlocks
- cable connection by the top
\square release units (coil)
- phase comparator
- fault indicators
■ Connection pads for two dry-type single-core cables
\square surge arresters
```


Functional units selection

Transformer protection

QM (750 mm)
Fuse-switch
combination unit

QMC (1000 mm)
Fuse-switch
combination unit

QMB (750 mm)
Fuse-switch combination unit
Outgoing line right or left

Electrical characteristics

Basic equipment:

■ switch and earthing switch

- three-phase busbars

■ voltage presence indicator

- equipment for three DIN fuses
- mechanical indication system for blown fuses
- Cl1 operating mechanism
- 150 W heating element
- connection pads for dry-type single-core cables
- three-phase bottom busbars for
- downstream earthing switch

Version:

- Cl 2 operating mechanism

Optional accessories:

- motor for operating mechanism with opening shunt trips
- auxiliary contacts

■ key-type interlocks

- auxiliary contact for blown fuses
- cable connection by the top
- DIN striker fuses
- opening shunt trip release
- release units (coil)

Functional units selection

Transformer protection

PM (750 mm)
Fused-switch unit

Electrical characteristics

Basic equipment:

■ switch and earthing switch

- three-phase busbars
- voltage presence indicator
- equipment for three DIN fuses
- mechanical indication system for blown fuses
- connection pads for dry-type single-core cables
- downstream earthing switch
- CIT operating mechanism
- 150 W heating element

Version:

Cl1 operating mechanism
Cl2 operating mechanism

Optional accessories:

```
■ motor for operating mechanism
\square auxiliary contacts
■ key-type interlocks
- auxiliary contact for blown fuses
■ DIN striker fuse
■ opening shunt trip release
■ cable connection by the top
- Release units
```

DM1-A (1000 mm)
Single-isolation
circuit breaker

DM1-D (1000 mm)
Single-isolation circuit breaker
Outgoing line on right

DM1-D (1000 mm)
Single-isolation circuit breaker
Outgoing line on left

Electrical characteristics

Basic equipment:

- SF1 circuit breaker disconnectable
- disconnector and earthing switch
- three-phase busbars
- circuit breaker operating mechanism RI
- disconnector operating mechanism CS
- voltage presence indicator
- three CTs
- auxiliary contacts on circuit breaker
- 150 W heating element

Version:

- connection pads for dry-type cables
three-phase bottom busbars
downstream earthing switch

Optional accessories:

- cubicle:
\square auxiliary contacts on the disconnector
\square cable connection by the top
\square protection using Sepam programmable electronic unit for SF1 circuit breaker
\square key-type interlocks
- connection pads for two dry-type single-core cables
\square surge arresters

■ cubicle:

\square LPCT (Low Power Current Transformer)
can only be used with Sepam relays

DM1-W (1000 mm)
Withdrawable single-isolation circuit breaker

DM2-W (1500 mm)
Withdrawable double-isolation circuit breaker Outgoing line on right

DM2 (1500 mm)
Double-isolation circuit breaker
Outgoing line on right

DM2 (1500 mm)
Double-isolation circuit breaker
Outgoing line on left

Electrical characteristics

Basic equipment:

- SF1 circuit breaker withdrawable
- three-phase busbars
- circuit breaker operating mechanism RI
- disconnector operating mechanism CS
- voltage presence indicator
- three CTs
- auxiliary contacts on circuit breaker
- 150 W heating element

Version:

- connection pads for dry-type cables
- downstream earthing switch

Optional accessories:

- cubicle:

\square auxiliary contacts on disconnectors
\square cable connection by the top

- key-type interlocks
\square protection using Sepam programmable electronic
\square protection using Statimax relays or Sepam protection electronic unit
unit for SF1 circuit breaker
- connection pads for two dry-type single-core cables
- LPCT (Low Power Current Transformer)
can only be used with Sepam relays
\square surge arresters

- circuit breaker:

- motor for operating mechanism
\square operation counter on manual operating mechanism
\square release units (coil)
\square low-energy Mitop or undervoltage opening release \square opening and closing shunt trips

Functional units selection
 MV metering

CM (750 mm)
Voltage transformers for mains with earthed neutral system

CM2 (750 mm)
Voltage transformers for mains
with insulated neutral system

Electrical characteristics

Basic equipment:

Optional accessories:

- auxiliary contacts
- cable connection by the top

Functional units selection

MV metering

GBC-A (750 mm)
Current and/or voltage measurements
Outgoing line on right

GBC-A (750 mm)
Current and/or voltage measurements
Outgoing line on left

GBC-B (750 mm)
Current and/or voltage measurements

Electrical characteristics

Basic equipment:

```
- three CTs
- connection bars
- three-phase busbars
- 150 W heating element
```


Optional accessories:

- extended LV compartment
- three voltage transformers (phase-to-earth)
- cable connection by the top

GBM (750 mm)
Connection unit
Outgoing line right or left

GAM2 (750 mm)
Incoming cable-connection unit

GAM (750 mm)
Incoming cable-connection unit with earthing switch

GIM (250 mm)
Intermediate bus unit

Electrical characteristics

Basic equipment:

Optional accessories:

- cable connection by the top
surge arresters
- operating mechanism CS1
auxiliary contacts
■ key-type interlocks

SM (750 mm)
Disconnector unit

TM (750 mm)
MV/LV transformer unit
for auxiliaries

Electrical characteristics

Basic equipment:

- disconnector and earthing switch
- three-phase busbars
- operating mechanism CS
- 150 W heating element
- connection pads for dry-type single-core

■ two 6.3 A fuses DIN type

- one or two voltage transformer
(phase-to-phase)

Optional accessories:

- auxiliary contacts
- key-type interlocks
- phase comparator
- fault indicators
- cable connection by the top
- release units
- connection pads for two dry-type single-core cables
- surge arresters

Functional units selection

Automatic Transfer System

NSM-cables (1500 mm)
Cables power supply for main incoming line (N) and standby line (S)

NSM-busbars (1500 mm)
Cables power supply for main incoming line on left (N) and busbars for standby line (S) on right

NSM-busbars (1500 mm)
Busbars power supply for main incoming line on left (N) and cables for standby line (S) on right

Electrical characteristics

Basic equipment:

- switches and earthing switches
- three-phase busbars 630 A
- connection pads for dry-type cables
- voltage presence indicator
- mechanical interlocking
- motorised operating mechanism Cl 2 with shunt trips
- additional enclosure
- automatic-control equipment

150 W heating element

Optional accessories:

- auxiliary contacts
- key-type interlocks
- telecontrol

Automatic switching controls With NSM unit T200S

TR: transfer switch response time (< 180 ms - depending on switchgear).

- Setting of time delay before switching: configurable from 0.1 s to $2 \mathbf{s}$ (T1) with step of 100 ms .
- Setting of time delay for return to the initial state: configurable from 5 s to $\mathbf{1 2 0} \mathbf{s}$ (T2) with step of 5 s .
■ Transfer switch configurable with SW1 \rightarrow SW2 or SW2 \rightarrow SW1. Note: in bold = default configuration.

Generator back up

TR: transfer switch response time (< 180 ms - depending on switchgear).

- Setting of time delay before switching to the generator:
configurable from 1 s to 15 s (T1) with step of 1 s .
- Start up of the generator (T2), depending on kind of generator, not configurable (time max. to wait: 30 s).
- Switching when the generator voltage is present.
- Setting of time delay for return to the initial state:
configurable from 60 s to 120 s with step of 5 s (T3).
- Stopping the generator 6 s after switching.

Note: in bold = default configuration.

Transfer switch

The transfer switch automatic control system gives automatic control and management of sources in the MV secondary distribution network. It is associated with VD3H voltage presence detectors.

Operating modes

- Operating mode is selected using the Easergy T200 S configuration tool.
- Semi-Auto mode, SW1 \longleftrightarrow SW2

When the voltage disappears on the channel in service, the automatic control switches to the other channel after a time delay T1. The automatic control does not switch back, unless there is a voltage break on the new channel in service.

■ Mode SW1 \rightarrow SW2, (SW2 \rightarrow SW1)

The automatic control only switches once from channel 1 or 2 to the back up channel.

- Mode Auto-SW1 or Auto-SW2

Channel 1 or 2 is priority if its MV voltage is OK. After switching to the back up channel, the mode switches back to the priority channel if the MV voltage on this channel is OK for a period T2.

Switching sequence

■ Switching takes place if the following conditions are fulfilled:

- automatic control on
\square SW1 open/SW2 closed or SW1 closed/SW2 open
\square "transfer locking" off
\square "earthing switch" on both channels off
$\square \mathrm{MV}$ voltage on the channel in service is absent
\square MV voltage on the other channel is present
\square no fault current.
■ Switching back to the main channel in "AUTO" modes is executed if:
\square the priority channel is open
- the MV voltage on the priority channel is OK for a time period of T3.

The closing order on the back up channel is given after confirming the opening of the channel in service.

Source transfer locking

A digital input prohibits orders from the local control panel, the automatic control systems and the remote control supervisor.
This input is generally connected to the downstream circuit breaker.

Single line	Solutions	Behaviour
	Automatic Transfer System ATS Network (1/2) T200 S/T200 I	On loss of voltage on L1 ATS automatically switches to L2
	Automatic Transfer System ATS Generator (1/2) T200 S/T200 I	On loss of voltage on L1 ATS starts the generator ATS waits for voltage presence on L2 ATS automatically switches to L2
	Bus Tie Automation BTA Network (2/3) T200 I	On loss of voltage on L1 or L2 ATS automatically switches to the live line

Automatic switching controls T200I

Configurable parameters:

- Number of faults: from 1 to 4
- Execution time: from 20 s to 4 mins configurable
in 5 s steps
- Automation system valid/invalid.

Auto-SW1 operating mode
Configurable parameters:

- Operating mode: semi-auto, auto SW1, auto SW2
- T1: 1 to 60 s in 1 s steps
- T2: 10 to 60 s in 1 s steps
- Automation system valid/invalid
- Motorisation type.
- Standard (command time 2.2 s)
- Cl 2 (command time 100 ms).

Easergy T200 I automation systems are factory predefined. No on-site programming is required.

- The automation systems can be switched on and off from the local operator panel and disabled using the configurator.
- Switches can be controlled manually in the following circumstances:
- automation system switched off
\square switch in local mode.

Sectionaliser (SEC)

The sectionaliser automation system opens the switch after a predefined number of faults (1 to 4) during the voltage dip in the reclosing cycle of the top circuit breaker.
■ The automation system counts the number of times a fault current followed by a voltage loss is detected. It sends an open order if:
\square the switch is closed
\square the fault has disappeared
\square the MV supply is absent.
\square The automation system is reset at the end of the execution time delay.

Automatic Transfer System (ATS)

The transfer switch automation system allows for the automatic control and management of power supply sources in the MV secondary distribution network. It is linked to voltage presence detectors VD3H.

Operating modes

The operating mode is selected via the Easergy T200 I configurator.

Semi-auto mode, SW1 < > SW2

When the voltage is lost on the channel that is in use, the automation system switches to the other channel after a time delay T1. The automation system returns no data unless there is a loss of voltage on the new channel.
Semi-auto mode SW1 > SW2, (SW2 > SW1)
The automation system only switches from channel 1 or 2 to the back-up channel.

Auto-SW1 or Auto-SW2 mode

After switching channels, the automation system switches back to the priority channel if the MV supply on that channel is restored.

Switching sequence

Switching takes place if the following conditions are met:
■ Automation system switched on

- SW1 open/SW2 closed or SW1 closed/SW2 open

■ No "transfer interlock"
■ No "earthing switch" on the 2 channels
■ MV supply lost on the channel in use
■ MV supply present on the other channel

- No fault current.

The automation system switches back to the main channel in "AUTO" mode if:

- The priority channel is open
$■$ The MV supply on the priority channel is correct for the time delay T2.
The close order on the back-up channel is given once the opening of the channel in use is reported.

Source transfer interlock

A digital input can be used to prohibit the issuing of orders from the local operator panel, the automation system and the remote control supervisor.
This input is generally connected to the downstream circuit breaker.

Automatic switching controls
 T200 I (cont.)

Configurable parameters:

- Operating mode
- Automatic return SW1/SW2
- Automation system on/off
- Delay before switching

T1: 100 ms to 60 s in 100 ms steps

- Delay before return

T2: 5 s to 300 s in 1 s steps

- Interlock delay on voltage loss

T3: 100 ms to 3 s in 100 ms steps

- Motorisation type: command time.

Bus tie coupling (BTA)

The BTA (Bus Tie Automatism) is an automation system for switching sources between two incoming lines (SW1 and SW2) and a busbar coupling switch (SW3). It must be used in conjunction with VD3H type voltage presence detectors and the fault current detection function on the busbar incoming lines.

Operating mode

Two operating modes can be configured:
\square Standard mode:
If the voltage is lost on one busbar, the automation system opens the incoming line (SW1 or SW2) and closes the coupling switch SW3. Coupling is conditional upon the absence of a fault current on the main source.
■ Interlock on loss of voltage after switching mode:
After execution of the automation system in standard mode, the voltage presence is checked for a configurable period. If the voltage is lost during this period, the coupling switch SW3 is opened and the automation system interlocked.

Coupling sequence

■ Coupling takes place if the following conditions are met:
\square the automation system is switched on
\square the switches on incoming channels SW1 and SW2 are closed
\square the earthing switches SW1, SW2 and SW3 are open
\square there is no voltage on an incoming line SW1 or SW2
\square there is no fault current detection on SW1 and SW2
\square there is no transfer interlock
\square voltage is present on the other incoming line.
\square The coupling sequence in standard mode is as follows:
\square opening of the de-energised incoming line switch after a delay T1

- closing of the coupling switch SW3.

■ The coupling sequence in "Interlock on loss of voltage after coupling" mode is completed as follows:
a monitoring of the voltage stability for a delay T3

- opening of the coupling switch SW3 if this condition is not met
- locking of BTA automation system.
\square The system returns to standard mode after coupling if:
- the "return to SW1 or SW2" option is activated
\square voltage on the channel has been normal for a delay T2
\square the automation system is activated
\square the automation system is not locked
\square there is no coupling interlock.

Coupling interlock

A digital input can be used to prohibit the issuing of orders from the local operator panel, the automation system and the remote control supervisor.
This input is generally connected to the downstream circuit breaker.

Locking the automation system

The BTA automation system is locked if one of the following conditions is met during the coupling process:

- Failure of a command to open or close a switch
\square Indication that an earthing switch has closed
■ Appearance of a fault current
■ Switch power supply fault
- Appearance of the coupling interlock
\square Manual or remote ON/OFF command from the automation system.

Network remote control and monitoring

Operating mechanisms

The control devices required for the unit operating mechanisms are centralised on the front panel. The different types of operating mechanism are presented in the table opposite.
Operating speeds do not depend on the operator, except for the CS. For the interlocks, consult the table pages 43 to 45 according to concerned cubicles.

Units	Type of operating mechanism					
	Switch/disconnector					Circuit breaker RI
	CIT	Cl1	Cl2	CS	CC	
IM, IMB, IMC	\square	\square	\square			
PM	\square	\square	\square			
QM, QMB, QMC		\square	\square			
CM, CM2, GAM				\square		
DM1-A, DM1-D, DM1-W, DM2, DM2-W				\square		\square
SM				\square		
NSM-cables, NSM-busbars			\square			

Operating mechanism types	CIT		Cl1		Cl 2			CS1	
Unit applications	Load-break switch Fused switch		Load-break switch Fuse switch combination		Load-break switch Fuse switch combination			Disconnector	
Main circuit switch	Closing	Opening	Closing	Opening	Mechanism charging	Closing	Opening	Closing	Opening
Manual operating mode	Hand lever	Hand lever	Hand lever	Push button	Hand lever	Push button	Push button	Hand lever	Hand lever
Electrical operating mode (option)	Motor	Motor	Motor	Coil	Motor	Coil	Coil	N/A	N/A
Speed of operation	1 to 2s	1 to 2s	4 to 7 s	35 ms	4 to 7 s	55 ms	35 ms	N/A	N/A
Network applications	Remote control network management		Remote control transformer protection		Remote control network management, need of quick reconfiguration (generator source, loop)			N/A	
Earthing switch	Closing	Opening	Closing	Opening	N/A	Closing	Opening	Closing	Opening
Manual operating mode	Hand lever								

Double-function operating mechanism CIT

- Switch function

Independent-operation opening or closing by lever or motor.

■ Earthing-switch function

Independent-operation opening or closing by lever.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open or close.

- Auxiliary contacts
\square switch $(2 \mathrm{O}+2 \mathrm{C})^{*}$,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch (1C) and earthing switch (1O +1C) if motor option.
■ Mechanical indications
Fuses blown in unit PM.

- Motor option

(*) Included * with the motor option

Operating mechanisms

Double-function operating mechanism Cl1

■ Switch function

\square independent-operation closing by lever or motor.
Operating energy is provided by a compressed spring which, when released, causes the contacts to close.
\square independent-operation opening by push-button (O) or trip units.

- Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open or close.

- Auxiliary contacts

\square switch (2 O + 2 C) *,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$,
\square switch (1C) and earthing switch (1 O + 1 C) if motor option,

- fuses blown (1 C).
- Mechanical indications

Fuses blown in units PM, QM.
■ Opening releases

- shunt trip.

■ Motor option
(*) Included with the motor option

Double-function operating mechanism Cl2

- Switch function
- independent-operation closing in two steps:

1 - operating mechanism recharging by lever or motor,
2 - stored energy released by push-button (I) or trip unit.
\square independent-operation opening by push-button (O) or trip unit.

■ Earthing-switch function

Independent-operation closing and opening by lever.
Operating energy is provided by a compressed spring which, when released, causes the contacts to open or close.

- Auxiliary contacts
- switch (2 O + 2 C) *,
\square switch $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch (1O+1C),
\square switch (1C) and earthing switch (1 O + 1 C) if motor option.
- Opening release shunt trip

■ Closing release shunt trip
■ Motor option
(*) Included with the motor option

Double-function operating mechanism CS

■ Switch and earthing switch functions
Dependent-operation opening and closing by lever.

- Auxiliary contacts
- disconnector (2 O + 2 C) for units DM1-A, DM1-D, DM1-W, DM2,
\square disconnector $(2 \mathrm{O}+3 \mathrm{C})$ and earthing switch $(1 \mathrm{O}+1 \mathrm{C})$ for units
DM1-A, DM1-D, DM1-W, DM2,
\square disconnector (1 O + 2 C) for units CM, CM2, TM, DM1-A, DM1-D, DM2.
■ Mechanical indications
Fuses blown in units CM, CM2 and TM.

Single-function operating mechanism RI for the SF circuit breaker

■ Circuit-breaker function

- independent-operation closing in two steps.

First operating mechanism recharge by motor or lever, then release of the stored energy by push-button (I) or trip unit.
\square independent-operation opening by push-button (O) or trip units.

- Auxiliary contacts
\square circuit breaker (4O+4C),
\square mechanism charged (1 C).
■ Mechanical indications
Operation counter.
- Opening releases
\square Mitop (low energy),
\square shunt trip,
\square undervoltage.
- Closing release
\square shunt trip
■ Motor option (option and installation at a later date possible).

Release type	SF1					
	Combinations					
	1	2	3	4	5	6
Mitop (low energy)	\square	\square	\square			
Shunt trip		\square		\square	\square	
Undervoltage			\square		\square	-

Auxiliaries selection

Motor option and releases for switch-units

The operating mechanisms $\mathrm{CIT}, \mathrm{Cl} 1$ and Cl 2 may be motorised.
The motor option can be installed on the site "switch open" without replacement the operating mechanism.

* Please consult us for other frequencies.

Motor option and releases for circuit breakers

Operating mechanism RI may be equipped with the motor option for the recharging function.

Un		DC					AC (50 Hz)*	
Power supply	(V)	24	48	110	125	220	120	230
Motor option								
	(W)	300						
	(VA)							380
Charging time	(s)	15					15	
Opening releases								
Mitop (low energy)	(W)	3						
Response time	(ms)	30					30	
Shunt trip	(W)	85					180	
	(VA)							
Response time	(ms)	45					45	
Undervoltage								
Pick-up	(W)	160						
	(VA)						280	550
Hold	(W)	10						
	(VA)						50	40
Response time	(ms)	55					55	
Closing release								
Shunt trip	(W)	85						
	(VA)							180
Response time	(ms)	65					65	

[^1]

Current transformer ARM6T

Current transformers

For units DM1-A, DM1-D, DM1-W, DM2, DM2-W, IMC, GBC-A, GBC-B

Transformer ARM6T/N1 or N2

- double primary

■ double secondary winding for measurement and protection.
Short-time withstand current Ith (kA)

11 n (A)		50-100	75-150	100-200	150-300	200-400	300/600	1000/1250
lth (kA)		16-20						25
t (s)		1						1
Measurement and protection	5A	7.5 VA - 15 VA - class 0.5						30 VA - class 0.5
	5A	2.5 VA - 5 VA - 5P20						$\begin{aligned} & 10 \text { VA - } \\ & \text { 5P20 } \end{aligned}$

Low Power Current Transformer (LPCT)

For units DM1-A, DM1-W
Transformer TLP 130, TLP 190
■ characteristics according to IEC standard 60044-8

- large primary current range
- direct output voltage for measurement and protection
- RJ45-8 pts secondary connector

■ insulation level 0.72 kV

- internal diameter 130 or 190 mm
- in SM6-36, TLP 130 can be used for 630 A, TLP 190 can be used up to 1250 A.

	TLP 130	TLP 190
Minimum rated primary current	5 A	5 A
Rated extended primary current	1250 A	2500 A
Secondary output	22.5 mV @ 100 A	22.5 mV @ 100 A
Accuracy class for measurement	0.5	0.5
Accuracy class for protection	5 P	5 P
Accuracy limit factor	250	400
Rated short time thermal current	25 kA 1 s	40 kA 1 s
Highest voltage (Um)	0.72 kV	0.72 kV
Rated power-frequency withstand	3 kV	3 kV

LPCT advantages

More reliable and safe solution for a wide rated primary current range with smaller dimensions.
■ No possibility to cause insulation faults. LPCT's are installed on the high voltage cables, they are not undervoltage.
■ Not effected from short circuit dynamic and thermic forces. LPCT's are not connected directly to the primary circuit.
■ Accuracy is guaranteed up to the primary and short time thermal current.
\square More safe secondary circuit operations,. LPCT's have low output voltage,
they provide voltage only for relay.
■ Easy installation and maintenance. LPCT's have smaller and fixed dimensions, they are covering less space in a cubicle and their dimensions do not change according to changing current. Conventional type CT's are covering larger spaces and their dimensions are directly proportional with the rated primary current.
Optimum solution for protection and measurement (Accuracy class for measuring 0.5) requirements.

Voltage transformer VRC3

Voltage transformers
For units CM, GBC-A, GBC-B
Transformer VRF3n/S2 (phase-to-earth)
■ single primary winding

- single secondary

Rated voltage (kV)	36	$33 \sqrt{3}$
Primary voltage (kV)	$30 \sqrt{3}$	$100 \sqrt{3}$ or $110 \sqrt{3}$
Secondary voltage (V)	$100 \sqrt{3}$	$3 P$
Thermal power (VA)	450	30
Accuracy class	0.5	Rated output for single primary winding (VA)

For units CM2

Transformer VRC3/S1 (phase-to-phase)

- single primary winding
- single secondary

Rated voltage (kV)	36	33
Primary voltage (kV)	30	100 or 110
Secondary voltage (V)	100	
Thermal power (VA)	700	
Accuracy class	0.5	$50-100$
Rated output for single primary winding (VA)	50	

For units TM

Transformer VRC3/S1 (phase-to-phase)
■ single primary winding

- single secondary

Rated voltage (kV)	36
Primary voltage (kV)	30
Secondary voltage (V)	220
Thermal power (VA)	1000

Surge arrester

For units IM, DM1-A, SM, GAM2

$\ln (\mathrm{A})$	630
$\mathrm{Un}(\mathrm{kV})$	36

Switch units

\square the switch can be closed only if the earthing switch is open and the access panel is in position.
■ the earthing switch can be closed only if the switch is open.
\square the access panel for connections can be opened only if the earthing switch is closed.
\square the switch is locked in the open position when the access panel is removed. The earthing switch may be operated for tests.

Circuit-breaker units

\square the disconnector(s) can be closed only if the circuit breaker is open and the front panel is locked (interlock type 50).

- the earth switch(es) can be closed only if the disconnector(s) is/are open.
- the access panel for connections can be opened only if:
\square the circuit breaker is locked open
\square the disconnector(s) is/are open,
\square the earth switch(es) is/are closed.

Note: it is possible to lock the disconnector(s) in the open position for no-load operations with the circuit breaker.

Functional interlocks

These comply with IEC recommendation 62271-200
In addition to the functional interlocks, each disconnector and switch include:
■ built-in padlocking capacities (padlocks not supplied)
\square four knock-outs that may be used for keylocks (supplied on request)
for mechanism locking functions.

Unit interlock											
Units	Interlock										
	A1	C1	C4	A3	A4	A5	50	P1	P2	P3	P5
IM, IMC				\square	■			\square			
PM, QM, DM1-A, DM1-D, DM1-W	■	-	\square				\square				
SM									-	\square	
GAM						\square	\square				\square

Key-type interlocks

Outgoing units

Aim:

- to prevent the closing of the earthing switch on a transformer protection unit unless the LV circuit breaker is locked in "open" or "disconnected" position.
to prevent the access to the transformer if the earthing switch for transformer protection has not first been closed.

Ring units

Aim:

- to prevent the closing of the earthing switch of a load-side cubicle unless the line-side switch is locked "open".
- to prevent the simultaneous closing of two switches.

■ to prevent the closing of the earthing switch of the casing unit unless the downstream and the upstream switches are locked in the "open" position.

Prevents

- on-load switching of the disconnectors.

Allows

■ off-load operation of the circuit breaker with the disconnectors open (double isolation).

- off-load operation of the circuit breaker with the disconnector open (single isolation).

깅N Legend for key-type interlocks:

Transformer protection
 Fuses selection

Fuse ratings for SM6-36 protection units such as PM, QM, depend, among other things, on the following criteria:

- service voltage
- transformer rating
- fuse technology (manufacturer).

Different types of fuses with medium loaded striker may be installed.
Fusarc CF fuses as per DIN dimensions 43.625.
Example: for the protection of a 400 kVA transformer at 33 kV , select Fusarc CF fuses rated 20 A .

Dimensions of fuses

Fusarc CF (DIN standards)

Rated voltage (kV)	Rating (A)	L (mm)	$\boldsymbol{\varnothing}$ (mm)	Weight (kg)
36	$10-16$	537	50.5	1.8
	25	537	57	2.6
	$31.5-40$	537	78.5	4.7
	$50-63$	537	86	6.4

Selection table of fuses ${ }^{(2)}$

Rating in A - no overload, $-5^{\circ} \mathrm{C}<0<40^{\circ} \mathrm{C}$ (1)

Service voltage (kV)	Transformer rating (kVA)											Rated voltage (kV)
For dry type transformers Fusarc CF												
30	10	10	16	20	25	31.5	31.5	50	50	63	63	36
31.5	10	10	16	20	25	25	31.5	50	50	63	63	36
33	6.3	10	16	20	25	25	31.5	40	50	50	63	36
34.5	6.3	10	16	20	25	25	31.5	40	50	50	63	36

For oil immersed type transformers
Fusarc CF

30	10	10	16	20	25	31.5	31.5	40	40	50	63	36
31.5	10	10	16	20	25	31.5	31.5	40	40	50	63	36
33	10	10	16	20	25	25	31.5	31.5	40	40	50	36
34.5	10	10	16	20	25	25	31.5	31.5	40	40	50	36

(1) Please consult us for overloads and operation over $40^{\circ} \mathrm{C}$.
(2) This selection table has been prepared according to the technical characteristics of France Transfo.
The characteristics of transformers and fuses may change according to manufactures and standards.

Access to fuses

Access is via the front with the front panel removed.
Fuses may be removed without tools by simply pulling them forward.
The field deflector pivots and automatically returns to its position

Replacement of fuses

When fault clearance results in one or two blown fuses, it is still common practice to replace only the blown fuses.
However, though the remaining fuse(s) may apparently be in good condition, their operating characteristics are generally reduced due to the short-circuit.
If non-blown fuses remain in service, they may blow even at very low overcurrent values.
In systems where continuity of service is of importance, it is recommended to replace all three fuses, in compliance with IEC recommendation 60282.1.

Connections
 Connections with dry-type cables

Single-core cables Cable- section $\left(\mathrm{mm}^{2}\right)$		Bending radius (mm)	UM, IMC, QM, CM, CM2, IMM, DM1-A, DM1-W, PM, GAM, GAM2, SM, TM, NSM
		Depth P (mm) P1	
1×35	525	350	P2
1×50	555	380	550
1×70	585	410	580
1×95	600	425	610
1×120	630	455	655
1×150	645	470	670
1×185	675	500	700
1×240	705	530	730

Note: the unit and the cables requiring the greatest depth must be taken into account when determining the depth P for single-trench installations. In double-trench installations must be taken into account to each type of unit and cable orientations.

The ageing resistance of the equipment in an MV/LV substation depends on three key factors:

\square the need to make connections correctly

New cold fitted connection technologies offer ease of installation that favours resistance over time. Their design enables operation in polluted environments under severe conditions.
\square the impact of the relative humidity factor
The inclusion of a heating element is essential in climates with high humidity levels and with high temperature differentials.

- ventilation control

The dimension of the grills must be appropriate for the power dissipated in the substation. They must only traverse the transformer area.

Network cables are connected:

■ on the switch terminals

- on the lower fuse holders
- on the circuit breaker's connectors.

The bimetallic cable end terminals are:

- round connection and shank for cables $\leqslant 240 \mathrm{~mm}^{2}$.

Crimping of cable lugs to cables must be carried out by stamping.
The end connectors are of cold fitted type
Schneider Electric's experience has led it to favour this technology wherever possible for better resistance over time.
The maximum admissible copper(*) cable cross section:

- $2 \times\left(1 \times 240 \mathrm{~mm}^{2}\right.$ per phase) for 1250 A incomer and feeder cubicles

■ $240 \mathrm{~mm}^{2}$ for 400-630 A incomer and feeder cubicles
■ $95 \mathrm{~mm}^{2}$ for transformer protection cubicles with fuses.
Access to the compartment is interlocked with the closing of the earthing disconnector.
The reduced cubicle depth makes it easier to connect all phases.
A $12 \mathrm{~mm} \varnothing$ pin integrated with the field distributor enables the cable end terminal to be positioned and attached with one hand. Use a torque wrench set to 50 mN .
(*) Consult us for alu cable cross sections

Cabling from below

All units through trenches

- the trench depth P is given in the table opposite for commonly used types of cables.

Trench diagrams

Rear entry or exit with conduits

Front entry or exit with conduits

Cable-connection height

Floor preparation

Units may be installed on ordinary concrete floors, with or without trenches depending on the type and cross-section of cables.
Required civil works are identical for all units.

Dimensions and weights

(1) The depth measures are given for the floor surface. (2) The depth in these units are 1615 mm with the enlarged low voltage compartment.
(3) The depth in these units are 1500 mm with the standard low voltage compartment.

Unit type	Height (mm)	Width (mm)	Depth (1) (mm)	Weight (kg)
IM, SM	2250	750	$1400^{(3)}$	310
IMC, IMB	2250	750	$1400^{(2)}$	420
QM, PM, QMB	2250	750	$1400^{(3)}$	330
QMC	2250	1000	$1400^{(3)}$	420
DM1-A	2250	1000	$1400^{(2)}$	600
DM1-D	2250	1000	$1400^{(2)}$	560
DM1-W	2250	1000	$1400^{(2)}$	660
NSM	2250	1500	$1400^{(2)}$	620
GIM	2250	250	1400	90
DM2	2250	1500	$1400^{(2)}$	900
DM2-W	2250	1500	$1400^{(2)}$	920
CM, CM2	2250	750	$1400^{(2)}$	460
GBC-A, GBC-B	2250	750	$1400^{(3)}$	420
GBM	2250	750	$1400^{(3)}$	260
GAM2	2250	750	$1400^{(3)}$	250
GAM	2250	750	$1400^{(3)}$	295

Fixing of units

With each other

The units are simply bolted together to form the MV switchboard (bolts supplied). Busbar connections are made using a torque wrench set to 28 mN .

On the floor

- for switchboards comprising up to three units, the four corners of the switchboard must be secured to the floor using:
\square bolts (not supplied) screwed into nuts set into the floor using a sealing pistol - screw rods grouted into the floor
- for switchboards comprising more than three units, the number and position of fixing points depends on local criteria (earthquake withstand capacities, etc.)
- position of fixing holes depends on the width of units.

Cubicles	A (mm)	B (mm)
IM, IMC, IMB, QM, PM, SM, CM, CM2, TM GBC-A, GBC-B, GBM, GAM2, IMB, GAM, QMB	750	650
DM1-A, DM1-D, DM1-W, QMC	1000	900
DM2, NSM, DM2-W	1500	1400
GIM	250	150

Dimensions

IM, SM, IMC, QM, PM, IMB,
GBM, GAM, GAM2, GBC-A,GBC-B QMB, QMC units

CM, CM2, NSM units

Cable positions

QMC

GAM

GAM2

QM, PM

DM1-A

Conventional concrete substation

Top view

Side view

Minimum required dimensions (mm)
(1) 100 mm for internal arc version
(2) In case of upper incoming option: it must be 2730 mm
(3) In case of upper incoming option: it must be 2830 mm

Modular switchboard

Order form

SM6-36

Connection to the network

Only one of the boxes (ticked \mathbf{X} or filled \square by the needed value) have to be considered between each horizontal line.
Green box \mathbf{X} corresponds to none priced functions.

Basic cubicle			Quantity	
Rated voltage Ur			(kV)	
Service voltage			(kV)	
Short-circuit current Isc			(kA)	
Rated current Ir			(A)	
Type of cubicle IM 750 IMB 750 IMC 750 SM 750				
Position number in the switchboard (from left to right)				
Direction of lower busbars for IMB Left (impossible as first cubicle of switchboard)			Righ	

Options		
Replacement of CIT by	Cl1	Cl 2
Electrical driving motorization		CIT
Electrical driving mechanism (with O/C coils and AC contacts)		
	CI1	Cl 2
O/C coils without electrical driving mechanism	Cl1	Cl 2
Electrical driving mechanism 24 Vdc and/or coil voltage 32 Vdc (not applicable on SM cubicle) 48 Vdc 60 Vdc	$\begin{array}{r} 110 \mathrm{Vdc} \\ 120-125 \mathrm{Vdc} \\ 137 \mathrm{Vdc} \\ 220 \mathrm{Vdc} \end{array}$	$\begin{aligned} & 120 / 127 \mathrm{Vac}(50 \mathrm{~Hz}) \\ & 220 / 230 \mathrm{Vac}(50 \mathrm{~Hz}) \\ & 120 / 127 \mathrm{Vac}(60 \mathrm{~Hz}) \\ & 220 / 230 \mathrm{Vac}(60 \mathrm{~Hz}) \end{aligned}$
Signalling contact 1 C on SW and $10 \& 1 \mathrm{C}$ on ES (not applicable on SM cubicle) $20 \& 2 \mathrm{C}$ on SW $\square \quad 20 \& 3 \mathrm{C}$ on SW and 10 \& 1 C on ES		
Top incomer (Single core cable maxi $240 \mathrm{~mm}^{2}$ with voltage indicator)		
Cable connection by the bottom (2 x single core, cable maxi $240 \mathrm{~mm}^{2}$, not applicable on IMC)		
Interlocking		
For all cubicle (except SM) A4	A3 SM6-SM6	P1 SM6-SM6
Localisation of 2nd lock for A3	On switch	On earthing switch
Localisation of 2nd lock for A4		Cubicle no.
SM cubicle only	P2 SM6-SM6	P3 SM6-SM6
Surge arresters (not applicable on IMB cubicle)		36 kV
Replacement of 630 A busbar by 1250 A (not possible for IMB)		
Internal arc version 16 kA 1s (not possible with "top incomer" option)		
Telecontrol (48 Vdc electrical motorization compulsory)		
Cubicle With relay		Without relay
Communication Modbus protocol	IEC	DNP
Modem type	RS232	RS485
Not for DNP PSTN	GSM	FSK
3 core balance current transformers		
Flair fault indicator 21D \square 21DT \square 22D or ammeter	23D	23D zero sequence AMP 21D

Modular switchboard

Order form

SM6-36
Fuse switch protection

Only one of the boxes (ticked X or filled \square by
the needed value) have to be considered between each horizontal line.
Green box X corresponds to none priced functions.

Modular switchboard

Order form

SM6-36
Circuit breaker protection

Only one of the boxes (ticked \mathbf{X} or filled \square by the needed value) have to be considered between each horizontal line.
Green box \mathbf{X} corresponds to none priced functions.

SM6-36

MV metering

Only one of the boxes (ticked X or filled \square by the needed value) have to be considered between each horizontal line.
Green box \mathbf{X} corresponds to none priced functions.

Basic cubicle	Quantity
Rated voltage Ur	(kV)
Service voltage	(kV)
Short-circuit current Isc	(kA)
Rated current Ir	(A)
	$\begin{aligned} & \text { GBC-A } 750 \\ & \text { GBC-B } 750 \end{aligned}$
Internal arc version 16 kA 1 s (not possible with "top incomer" option)	
Direction of lower busbars for GBC-A	Right
Position number in the switchboard (from left to right)	
Voltage transformers	See specific order form
Signalling contact (for CM, CM2 and TM only)	1 O and 2 C on SW
Blown fuse mechanica	dication (CM, CM2)
Fuses (for CM, CM2 and TM only)	See fuse price structure
Options	
Current transformers and voltage transformers for GBC	See specific order form
Top incomer (cable maxi $240 \mathrm{~mm}^{2}$ with voltage indicator)	
Replacement of 630 A busbar by 1250 A (for CM, CM2 and TM only)	

Modular switchboard

Order form

SM6-36
Casing

Only one of the boxes (ticked \mathbf{X} or filled \square by the needed value) have to be considered between each horizontal line.
Green box \mathbf{X} corresponds to none priced functions.

Basic cubicle	Quantity
Rated voltage Ur	(kV)
Service voltage	(kV)
Short-circuit current Isc	(kA)
Rated current Ir	(A)
Type of cubicle GAM 750 ${ }^{\text {a }}$ (GAM2 750	GBM 750
Position number in the switchboard (from left to right)	
Direction of lower busbars for GBM Left (impossible on the first cubicle of the switchboard)	$\text { Right } \longrightarrow[$
Options	
Top incomer (single core cable maxi $240 \mathrm{~mm}^{2}$ with voltage indicator)	
Replacement of 630 A busbar by 1250 A (for GAM2 only)	
Internal arc version 16 kA 1s (not possible with "top incomer" option)	

Modular switchboard

Order form

SM6-36
Automatic Transfer System

Only one of the boxes (ticked X or filled
the needed value) have to be considered between each horizontal line.
Green box X corresponds to none priced functions.

Basic cubicle	Quantity \square
Rated voltage Ur	(kV) \square
Service voltage	(kV) \square
Short-circuit current Isc	(kA) \square
Rated current Ir	(A) \square
Type of cubicle	NSM busbar \square
Position number in the switchboard (from left to right)	\square
Incoming busbar for NSM busbar	\square

Cable connection by the bottom (cable maxi $240 \mathrm{~mm}^{2}$) for NSM cable

Options				
Signalling contact		1 C on SW and 10 \& 1C on ES		
Operation counter				
Interlocking	SM6-SM6			
	$1 \times \mathrm{P} 1$	Right cubicle	Left cubicle	
	$2 \times \mathrm{P} 1$		Right and left cubicle	
	$1 \times \mathrm{A} 3$	Right cubicle	Left cubicle	
		On switch	On earthing switch	
	$2 \times$ A3 Right cubicle	On switch	On earthing switch	
	Left cubicle	On switch	On earthing switch	
Telecontrol (only with utility stand by source)				
Communication protocol	Modbus	IEC	DNP	
Modem type		RS232	RS485	
Not for DNP	PSTN	GSM	FSK	

Order form
 SF1fixed or withdrawable
 for SM6-36

Only one of the boxes (ticked \mathbf{X} or filled \square by the needed value) have to be considered between each horizontal line.
Green box X corresponds to none priced functions.

Basic circuit breaker	Quantity \square
Rated voltage Ur	(kV)
Service voltage	(kV)
Impulse voltage Up	(kVbil)
Short-circuit current Isc	(kA)
Rated current Ir	(A) \square
Frequency	Fixed
Withdrawable	$50 \mathrm{~Hz} \square$

Colour for push buttons and indicators
Push buttons open/close: Red/black
Indicator open/close: Black/white
Operating mechanism charged/discharged: White/yellow

Circuit breaker options				
1st opening release (see possible choices combination table below)				
Shunt opening release YO1				
	$\begin{aligned} & 48 \mathrm{Vdc} \\ & 60 \mathrm{Vdc} \end{aligned}$	110 Vdc	$48 \mathrm{Vac}(50 \mathrm{~Hz})$	
		125 Vdc	$110 \mathrm{Vac}(50 \mathrm{~Hz})$	
		220 Vdc	$230 \mathrm{Vac}(50 \mathrm{~Hz})$	
Undervoltage release YM				
$24 \mathrm{Vdc} \square \quad 48 \mathrm{Vdc} \square \quad 110 \mathrm{Vdc} \square \quad 48 \mathrm{Vac}(50 \mathrm{~Hz})$				
30 Vdc	60 Vdc	125 Vdc	$110 \mathrm{Vac}(50 \mathrm{~Hz})$	
220 Vdc			$220 \mathrm{Vac}(50 \mathrm{~Hz})$	
Mitop		Without contact	With contact	

2nd opening release (see possible choices combination table below)

Different releases combinations
Shunt opening releases YO1/YO2
Undervoltage release YM
Mitop

1			2	1	1		
		1		1		1	
		1				1	1

[^0]: Switch-disconnector and earthing switch

[^1]: * Please consult us for other frequencies.

