Medium Voltage Distribution Product catalogue for switchboard manufacturer

Catalogue
$\cap \cap \cap$

General Contents

Control compartment components
AC and DC protection circuit
Control and indication 72
Connection 74
Additional technical information
Circuit breaker

Protection, monitoring, control and metering
Sepam 1000+

How to order

Circuit breaker
Protection, monitoring, control and metering 86

Earthing switch

Switchboard components
Separate accessories

Switchboard components

Full version

Full version

Full version

Full version 20 20 20 20

Modular version

Modular version

Modular version

Modular version 26 26 26 26
Fitted accessories
Fitted accessories
Fitted accessories
Fitted accessories 32 32 32 32
Dimensions
Dimensions
Dimensions
Dimensions 39 39 39 39
Evolis presentation
Evolis presentation
Evolis presentation
Evolis presentation
Versatility
Versatility
Versatility
Versatility 6 6 6 6
Heavy duty and innovative
Heavy duty and innovative
Heavy duty and innovative
Heavy duty and innovative
Heavy duty and innovative 10 10 10 10
The commitment of a major manufacturer
The commitment of a major manufacturer 14 14 14 14
Protection, monitoring
control and metering
Presentation 44
Sepam 1000+ 46
PowerLogic 54
Dimensions 55
58
Earthing 59
Indication and interlocking
Switchboard components
Cubicle components 65
Earthing switch

Sell

your added value.

Dear customers,

Evolis is an innovative range of medium voltage vacuum circuit breakers designed and manufactured by Schneider Electric.

Besides this new product that you are going to discover, we want to go even further in meeting your expectations. With this catalogue, we propose a comprehensive and adapted range of product for integration in your medium voltage cubicles.

This offer has been designed to take into account your working constraints. To save you precious time, we have made product selection simpler and reduced delivery times.

You can therefore save time and concentrate on satisfying your customers by focusing on your know-how.

Let's built a lasting relationship together.

Jean Kieffer

Senior vice president
Strategic Business Segment
Medium Voltage

Evolis: versatility

Where to use Evolis?

Evolis circuit breakers are used to protect and control public or industrial medium voltage electrical distribution networks
Evolis is indoor switchgear that is particularly suited to the production and renovation of HV/MV, MV/MV and MV/LV sub-stations.
It is suitable for the protection of all types of application:
cables, lines, motors, capacitors, transformers, bus sectioning of sources, etc.

2 versions adapt to your fixed or withdrawable installation:

Modular version
basic circuit breaker with kits delivered
in separate

Evolis: performance

What does Evolis offer you?
The electrical characteristics are given in the circuit breaker designation

- The rating plates on the front of the circuit breaker also show the breaking capacity:
yellow: 25 kA
\square blue: 31.5 kA
- red: 40 kA .

- 3 rated voltages:

$\square 7.2 \mathrm{kV}$ index 7 ,

- 12 kV index 17 ,
- 17.5 kV index 17.

- 3 breaking capacities:

- 25 kA index P1,
$\square 31.5 \mathrm{kA}$ index P2,
$\square 40 \mathrm{kA}$ index P3.
- 4 rated currents:

630, 1250, 1600, 2500 A.

Full version

Modular version

How does Evolis eliminate faults?

Electrical endurance

A magnetic field is applied along the axis of the vacuum interrupter contacts. This process maintains the arc in a diffuse mode even at high current values. It ensures optimum distribution of the energy over the contact surface thus avoiding localised hot spots.
\square The advantages of this technique:
\square a very compact vacuum interrupter,

- low dissipation of arcing energy in the vacuum interrupter.

Evolis is in conformity with highest electrical endurance class
(IEC 60 056: class E2).

Mechanical endurance

\square This magnetic field is generated by a patented external coil which surrounds the contact zone. This solution provides many advantages:
\square a simplified and therefore reliable vacuum interrupter,
\square heavy duty contacts which do not distort during repeated switching operations, - considerable reduction in control mechanism energy.

■ For the first time, a low voltage device control mechanism has been integrated in a medium voltage circuit breaker. The Masterpact control mechanism used on Evolis provides the benefits of a system that has proven itself for over 10 years on hundreds of thousands of installations.

Evolis is in conformity with most demanding mechanical endurance class (IEC 60 056: class M2)

An integrated protection chain

The Sepam 1000^{+}protection unit integrated with Evolis together with innovative current sensors, provide you with a comprehensive metering, protection and energy management chain.

- A high performance and economical solution

\square Sepam 1000^{+}, through its modular offer, proposes a cost effective solution adapted to every requirement,
ם one single sensor reference covers the circuit breaker's full operating range.

■ Easy to control and to install

\square all components in the protection chain are catalogued and delivered quickly, \quad current sensors, developed in the circuit breaker environment,
are simply mounted on the busducts
\square the operation of the entire protection chain with the Evolis circuit breaker has been extensively tested.

- The power of a multifunctional digital unit

Sepam 1000^{+}is not a simple protection relay, it is a multifunctional unit notably providing:
\square circuit breaker diagnosis functions (number and time of switching operations, rearming time, cumulated switched A^{2}),
\square direct circuit breaker control whatever release unit type, \square remote equipment operation through the Modbus communication option.

Evolis: tailored to your requirements

What does Evolis offer you?

Circuit breakers that combine simplicity of selection and richness of offer.

■ 2 versions are proposed:
\square fullversion comprising
the withdrawable circuit breaker and its cradle

- modular version comprising
separately delivered kits.
■ "Universal" accessories can be added
to either version.
E.g:
coil, contact, motor, connection, inter-locking systems, etc

Full version: a fully assembled and tested unit

- As standard, the circuit breaker is equiped with all the components required for "ready to use" withdrawable installation in metal clad cubicles. This unit is easy to integrate in a cubicle environment, all it needs is mechanically fixing in place. An installation guide explains the required operations in detail.

■ This version provides the guarantees of a highly reliable unit, whose components function in perfect harmony. Critical points such as inter-locking systems, dielectric withstand and temperature rise have been checked thoroughly during design. It is a system that is fully integrated and tested by the manufacturer, in conformity with IEC standards 60298 and 60056.

Modular version:

high added value accessories

- The circuit beaker is proposed in its most simple configuration. In this case it can be combined with additional functions, to satisfy various requirements.

■ This version offers maximum flexibility to adapt to constraints in existing cubicles or to operating specifications:

- retrofit: fixed and withdrawable installation,
\square block-type cubicle or fenced sub-station: fixed or removable installation, r compartmented cubicle: fixed and withdrawable installation
$■$ The panel builder chooses the components he needs for a "customised" solution tailor made to his know-how.

Build your own version...

Evolis: the commitment of a major manufacturer

What guarantees does Evolis provide?

Conformity with standards

- Conformity with standards is a guarantee of suitability for the required function, the very basis of the contract between the supplier and the customer: \square dependability - operator safety.

It allows specifications to be fully satisfied whilst complying with local contraints. During its design phase, Evolis was subjected to a series of tests which confirmed excellent performance levels, beyond the standards requirements.

■ Type testing:

\square dielectric tests,
\square temperature rise,

- breaking capacity,
- thermal withstand,
- mechanical endurance
- electrical endurance.
\square Specific testing:
\square ageing,
- transport and storage
N.B.:

IEC 60 694: common specifications for high voltage switchgear and controlgear standards IEC 60 056: high voltage alternating current circuit breakers
IEC 60 298: A.C metal-enclosed switchgear between 1 kV and 52 kV .
Comment: for more information, consult the IEC organisation site: www.iec.ch.

Certification

■ Certification of conformity provides guarantees that the product:

- has been subjected to type testing according to EN45001 standards procedures in accredited laboratories by independent organisations,
\square is in conformity with recognized international standards.

■ Evolis is under process of certification by external EN 45011 accredited organisations, members of the STL (Short circuit Testing Liaison).

[^0]

Guaranteed quality

Schneider Electric integrates a functional organisation in each of its units with the main mission of checking quality and overseeing compliance with standards.

The quality system, for the design and manufacture of Evolis circuit breakers, is certified to be in conformity with the requirements of ISO 9001 and ISO 9002 quality assurance standards.

- ISO 9001: quality system for design/production and installation
- ISO 9002: quality system for production and installation

■ IQNET: international certification network.

Systematic control

During manufacture, each circuit breaker is subjected to routine systematic testing, with the aim of checking both quality and conformity.

■ Control of vacuum interrupters

Each vacuum interrupter, sealed and airtight, is checked for the quality of the vacuum obtained. This pressure measurement is based on the proven "magnetron discharge" method.
Using this sophisticated procedure, measurement is very precise and does not require access to the inside of the bulb, thus not affecting the airtight seal.

■ Control of the circuit breaker

A rigorous set of tests and measurements is carried out on each circuit breaker. The results obtained are reported on and signed off by the quality control department on the test certificate for each device, thereby guaranteeing product traceability.

Respecting the environment

■ Schneider Electric sets itself the goal of

\square actively participating in environmental protection, from a circuit breaker's design right through to its end of life,

- complying with the environmental requirements of both its customers and end users of its products.

- For Evolis circuit breakers

- development teams integrated the product's end-of-life right from the design stage. The product is easy to dismantle, all the materials used are recyclable and non-polluting
\square plastic parts are marked to identify the material,
\square the circuit breakers are produced in factories which respect the environment. Our subsidiary at Aubenas, France has been awarded the ISO 14001 standard certification (environmental management system).

Comment: for more information, consult the ISO organisation site: www.ISO.CH

How Evolis makes your life easier?

Evolis circuit breaker

[^1]
Choice

Evolis circuit breakers offer a comprehensive and rational range:
■ 3 operating voltages ($7.2 \mathrm{kV}-12 \mathrm{kV}-17.5 \mathrm{kV}$)
■ 3 breaking capacities ($25 \mathrm{kA}-31.5 \mathrm{kA}-40 \mathrm{kA}$)

- 4 current ratings (630-1250-1600-2500 A)
- 1 common range of accessories and auxiliaries

■ 2 versions: complete and modular

Ordering and delivery

- You can order
\square the cradle before the circuit breaker,
\square a specific release unit, at the last moment, that you will easily be able to install yourself.
- Thanks to modular design and local customising, the delivery is faster

Installation

Evolis is easy to incorporate in cubicles
■ Optimisation of volumes: one single height and depth throughout the range
■ Electrical auxiliaries are interchangeable throughout the range

- Adjustable device height in the cubicle
- Variable phase to phase connection points.

Operation

Increased safety

Evolis has been designed and industrialised to provide maximum safety for operators whilst guaranteeing the simplicity and rapidity of operations

- Protective metal shutters
- Safety interlocking systems to avoid operator errors when racking in or out

■ Racking in/out possible with the door closed.

Reduced maintenance

- Contact wear diagnosis is possible through a measurement on the pole unit
- Electrical auxiliairies are easily mounted on site (all you need is a screwdriver)
- Common stock of replacement parts with the Masterpact circuit breaker

■ Diagnosis of the circuit breaker's functional chain using Sepam 1000^{+}.

From pre-engineering to switchboard composition, a "toolkit" exists for panel builders to highlight their know-how and optimise their work around Evolis.

Tools to partner your know-how

Design guide

This document provides you with all the technical recommendations you require for your calculations when designing cubicles and incorporating equipment in conformity with IEC standard 60298.
E.g.:
\square defining the switchgear,

- dielectric strength,
a busbar calculation,
\square temperature rise calculation,
\square definition of IP protection index.

Electronic catalogue

This "electronic" selection guide will rapidly become an everyday tool.
Several access points are proposed to discover the offer. It automatically provides the price of the device and an order form once you have selected your Evolis version.

Installation guide

This document provides you with all the information and recommendations you need to incorporate the circuit breaker and its accessories in a cubicle.
E.g.:
\square dimensions and space requirements,

- mechanical interface,

ם power circuit connection,

- auxiliary connection,
- layout diagrams.

AUTOCAD library

For easier and more reliable integration of Evolis in a cubicle environment, an extensive library of dimensional drawings and electrical layout diagrams is available in AUTOCAD format (format DXF/DWg/WMF).

Internet site

Missing a certificate? Lost a technical manual?
Connect up to our web site where you can download all of our technical documentation.

This chapter provides useful information
in selecting the performance levels of your
Evolis circuit breaker.
It also describes all the functions
associated to each versions.
Panorama
18

Full version 20
Performance tables20
Power circuit 22
Sensors 23
Racking in 24
Support frame 25
Modular version 26
Performance tables 26
Connecting the power circuit 28
Power circuit 29
Sensors 30
Racking in 31
Support frame 32
Fitted accessories 33
Opening circuit 33
Remote control 35
Indication 37
Locking 38
Dimensions 39
Full version 39
Modular version 40

Common characteristics according to IEC 60056			
rated frequency	fr	(Hz)	50 \& 60
short-time withstand current	lk for tk = 3 s	(kA) rms	$\mathrm{lk}=\mathrm{lsc}$
rated peak withstand current	Ip	peak (kA)	$\mathrm{lp}=2.5$ \& 2.6 lk
rated short circuit making current		peak (kA)	$=2.5$ \& 2.6 Isc
operating sequence			O-3mn-CO-3mn-CO
			O-0.3s-CO-3mn-CO
			O-0.3s-CO-15s-CO
operating times	opening	ms	< 50
	breaking	ms	<60
	closing	ms	<65
mechanical endurance	class		M2
	number of operations with maintenance		25000
electrical endurance	class		E2
	number of operations	25 kA	100
		31.5 kA	70
		40 kA	50
capacitive current breaking			C1 class

Characteristics according to IEC 60056			7P1-1250	7P2-1250	7P2-2500	7P3-2500	17P1-630	17P1-1250
rated voltage	Ur	(kV) rms	7.2	7.2	7.2	7.2	12/17.5	12/17.5
rated insulation level	Ud	(kV) rms	20	20	20	20	38	38
	Up	(kV) peak	60	60	60	60	95	95
rated short-circuit breaking current	Isc	(kA) rms	25	31.5	31.5	40	25	25
rated normal current ($-25^{\circ} \mathrm{C},+40^{\circ} \mathrm{C}$)	Ir	(A) rms	1250	1250	2500	2500	630	1250
climatic version	$-25^{\circ} \mathrm{C}+40^{\circ} \mathrm{C}$		-	-	■	-	-	-
Installation and connections								
phase distance between poles between MV connections on the cradle		(mm)	145 \& 185	185	240	240	145 \& 185	145 \& 185
		(mm)	$\begin{aligned} & \hline 145 \ldots 170 \\ & 185 \ldots 210 \\ & \hline \end{aligned}$	185... 210	240... 265	240... 265	$\begin{aligned} & \hline 145 \ldots 170 \\ & 185 \ldots 210 \\ & \hline \end{aligned}$	$\begin{aligned} & 145 \ldots 170 \\ & 185 \ldots .210 \\ & \hline \end{aligned}$
dimensions breaker and cradle (mm)		Width (W)	592 \& 700	700	880	880	592 \& 700	592 \& 700
		Depth (D)	1140	1140	1140	1140	1140	1140
		Height (H)	960	960	960	960	960	960
mass breaker and cradle		(kg)	118 \& 123	128	194	194	118 \& 123	118 \& 123

Full

version

17P1-2500	17P2-630	17P2-1250	17P2-2500	17P3-1250	17P3-2500
12/17.5	12/17.5	12/17.5	12/17.5	12/17.5	12/17.5
38	38	38	38	38	38
95	95	95	95	95	95
25	31.5	31.5	31.5	40	40
2500	630	1250	2500	1250	2500
■	-	-	-	-	-
240	185	185	240	240	240
240... 265	185... 210	185... 210	240... 265	240... 265	240... 265
880	700	700	880	880	880
1140	1140	1140	1140	1140	1140
960	960	960	960	960	960
194	128	128	194	194	194

Composition

- The power circuit comprises:
a mobile contacts made up of disconnecting clusters and arms mounted on the circuit breaker,
\square fingers located on the cradle and insulated by bushings and metal shutters.
\square This unit gives perfect control of dielectric and temperature rise considerations and has been validated by testing.

Power circuit

- Customer connection is easily achieved outside the cradle:
- on vertical copper terminals integrated in the bushing,
\square through a set of connectors, also used on the basic circuit breaker unit.
Connection variants described on page 28 are possible.

Comments:

- The dielectric withstand values shown in the performance tables are guaranteed excluding these connectors.
- The panel builder should check the overall cubicle connection configuration; typical examples are given in the installation guide.

Function

These low power sensors provide accurate current measurement to the protection function when the Evolis circuit breaker is associated with the Sepam1000+.

Composition

The sensor is delivered with 5 m of cable and connector that allows direct connection to the Sepam unit.

Mechanical characteristics

Sensor CVv200

Mounted directly on the Evolis withdrawable circuit breaker cradle.
The sensors are simply located on the bushings and fixed using a screw.
Each sensor covers the full operating range of the corresponding circuit breaker. - Connection to the Sepam 1000^{+}is achieved using an armoured cable which is attached to each sensor.

Electrical characteristics

■ In conformity with standard IEC 60044-8, defining voltage output current sensors
■ Usable for nominal currents of 25 A to 3150 A
■ Class 0.5 over the range 100-4000 A
\square The choice of sensor is solely based on the phase to phase distance of the cradle:
$\square 120 \mathrm{~mm}$ diameter for phase to phase distances of 145 and 185 mm ,

- 200 mm diameter for phase to phase distances of 240 mm .

■ Current sensors deliver a voltage output at a ratio of $100 \mathrm{~A} / 22.5 \mathrm{mV}$.

Operation

An input terminal is provided on the Sepam 1000^{+}for testing and maintenance purposes. A test cabinet interface can be ordered to check the correct operation of sensors.

Shutters

$\stackrel{\circ}{\circ}$
$\stackrel{\tilde{N}}{\circ}$
$\stackrel{\sim}{\circ}$

Auxiliary contacts

Composition

The "racking in" function is provided by:

- The racking truck supporting the circuit breaker (mobile part).

■ The cradle (fixed part).

Operating procedure

■ The circuit breaker moves through 3 stable states:

- service: circuit breaker racked in and locked in place; low voltage connected, a test: circuit breaker racked out and locked in place; low voltage connected, - extracted: the circuit breaker can be unlocked and extracted from the cubicle, with no interlocking.

3 stable states for manual operation

Comment

Functions

- Interlocking between circuit breaker control and cradle position makes operation safer: racking in or out only when the circuit breaker is open.
■ Interlocking is also provided between the low voltage connector and the circuit breaker.
Racking in is only possible when the low voltage connector is connected.
■ Earthing is automatically achieved throughout the whole racking in operation.
- Protective shutters placed on the cradle, prevent access to the racking fingers
when the device is extracted (protection index: IP2X).
\square For maintenance operations, it is possible to:
a padlock the shutters in the closed position,
- unlock the shutters mechanism to access the racking fingers.
- A fool prof protection enables cradle and circuit breaker to be matched up.

This system is mounted on the racking base.
Part of it has to be assembled by the panel builder on the cubicle floor.

Accessories

■ A set of auxiliary contacts:
$\square 4$ racked in/racked out position contacts,
$\square 1$ contact indicating that the cradle is locked in the racked in position.

- A propulsive system combined with a crank makes racking in and racking out easier. It allows the operation to be carried out with the door closed. Interlocking prevents to insert the crank until the racking base selector has been positioned to the "racked out" position.
- Additional earthing for the base can be provided by a copper brush.
- A key locking system (Ronis or Profalux) for the racked out position on the circuit breaker will provide increased safety when working downstream of the circuit breaker. This system is combined with an earthing disconnector (refer to page 66).

Support frame

Function

- The support frame allows:
\square A "cassette" type circuit breaker to be transformed into a "roll on the floor" type circuit breaker by adding an intermediary structure,
\square this structure can be positioned at a variable height according to your cubicle.

Composition

- A roller kit will be provided with a drawing to allow the panel builder to adapt the height to its need inside his cubicle.

Performance tables
$7 P_{1} 1250$ at 17P3 2500

Common characteristics according to IEC 60056			
rated frequency	fr	(Hz)	50 \& 60
short-time withstand current	lk for tk = 3 s	(kA) rms	$1 \mathrm{k}=\mathrm{Isc}$
rated peak withstand current	Ip	peak (kA)	$\mathrm{lp}=2.5$ \& 2.6 lk
rated short circuit making current		peak (kA)	$=2.5$ \& 2.6 Isc
operating sequence			O-3mn-CO-3mn-CO
			O-0.3s-CO-3mn-CO
			O-0.3s-CO-15s-CO
operating times	opening	ms	< 50
	breaking	ms	<60
	closing	ms	<65
mechanical endurance	class		M2
	number of operations with maintenance		25000
electrical endurance	class		E2
	number of operations	25 kA	100
		31.5 kA	70
		40 kA	50
capacitive current breaking			C1 class

Characteristics according to IEC 60056			7P1-1250	7P2-1250	7P2-2500	7P3-2500	17P1-630	17P1-1250
rated voltage	Ur	(kV) rms	7.2	7.2	7.2	7.2	12/17.5	12/17.5
rated insulation level	Ud	(kV) rms	20	20	20	20	38	38
	Up	(kV) peak	60	60	60	60	95	95
rated short-circuit breaking current	Isc	(kA) rms	25	31.5	31.5	40	25	25
rated normal current ($-25^{\circ} \mathrm{C},+40^{\circ} \mathrm{C}$)	Ir	(A) rms	1250	1250	2500	2500	630	1250
climatic version	-25°	$+40^{\circ} \mathrm{C}$	-	-	■	-	-	-
Installation and connections								
phase distance without MV connections with MV connections		(mm)	145 \& 185	185	240	240	145 \& 185	145 \& 185
		(mm)	$\begin{aligned} & 145 \ldots 170 \\ & 185 \ldots 210 \end{aligned}$	185... 210	240... 265	240... 265	$\begin{aligned} & 145 \ldots 170 \\ & 185 \ldots . .210 \end{aligned}$	$\begin{aligned} & \hline 145 \ldots 170 \\ & 185 \ldots 210 \end{aligned}$
dimensions (mm)		Width (W)	470 \& 550	550	660	660	470 \& 550	470 \& 550
		Depth (D)	429	429	429	429	429	429
		Height (H)	530	530	530	530	530	530
mass		(kg)	50	50	70	70	50	50

Modular

version

17P1-1600	17P1-2500	17P2-630	17P2-1250	17P2-1600	17P2-2500	17P3-1250	17P3-2500
12/17.5	12/17.5	12/17.5	12/17.5	12/17.5	12/17.5	12/17.5	12/17.5
38	38	38	38	38	38	38	38
95	95	95	95	95	95	95	95
25	25	31.5	31.5	31.5	31.5	40	40
1600	2500	630	1250	1600	2500	1250	2500
-	-	-	-	-	-	-	-
145 \& 185	240	185	185	185	240	240	240
$\begin{aligned} & 145 \ldots 170 \\ & 185 \ldots 210 \\ & \hline \end{aligned}$	240... 265	185... 210	185... 210	185... 210	240... 265	240... 265	240... 265
470 \& 550	660	550	550	550	660	660	660
429	429	429	429	429	429	429	429
530	530	530	530	530	530	530	530
50	70	55	55	55	70	70	70

Connecting the power circuit

Terminal

Composition

■ The basic circuit breaker unit is equipped with copper, drilled connection terminals, located at the top and bottom of the breaking poles
■ Connectors are mounted on these terminals using the associated bolt work.
They enable several connection variants.
The same connectors can be also mounted on the bushing connection terminals (see page 22).

Fixed connectors
horizontal connectors (H) vertical connectors (V) mixed connectors

A horizontal connector becomes a vertical connector by a 90° rotation.

Variable distance connectors

horizontal spreading vertical spreading
connectors (H) connectors (V)

The spreading connector enables the connecting distance to be increased by 0 to 25 mm .

Combined solution example

Comments:

- The dielectric withstand values shown in the performance tables are guaranteed excluding these connectors.
- These connectors may be fitted with either bare copper, tin plated copper or tin plated aluminium conductors without any particular protection.
- The dimensions and shapes of these conductors should be determined by the panel builder according to the required dielectric and temperature rise characteristics of the full connection system; typical examples are given in the installation guide.

Cluster and finger

Composition

The panel builder produces the power circuit himself. He has the possibility of integrating one of these two highly technical units.

- Clusters and fingers
- Arms, clusters, fingers and bushings

Cluster and finger

- The tulip type cluster has a shape which provides maximum contact surface whilst optimising heat dissipation. Moreover, in the case of short-circuit, it offers good compensation characteristics for electrodynamic forces. Its degrees of freedom avoid the use of an interchangeability testing tool; a simple adjustment guide is all that is required.

■ The finger is a component designed specifically for the cluster, regarding its shape, tolerances and materials. Contact between the finger and the cluster is guaranteed by type testing: 1000 racking in-out operations.

Arm, cluster, finger and bushing

- The choice of a cylindrical shape for the arm optimises the dielectric withstand and eliminates the need for additional insulation.
- The cylindrical shape of the bushing provides excellent dielectric withstand.
- It includes a connection terminal that can be fitted with the connectors described on page 22.

Comment:

- Performances of the overall unit shall be controlled by the panel builder.
- Conditions of installation for both units described above are given in the installation guide.

Sensor CVV120

Sensor CVv200

Function

These low power sensors provide accurate current measurement to the protection function when the Evolis circuit breaker is associated with the Sepam1000+

Composition

The sensor is delivered with 5 m of cable and a connector that allows direct connection to the Sepam unit.

Mechanical characteristics

Mounted directly on the bushings.
The sensors are simply located on the bushings and fixed using a screw. Each sensor covers the full operating range of the corresponding circuit breaker. ■ Connection to the Sepam 1000^{+}is achieved using an armoured cable which is attached to each sensor.

Electrical characteristics

■ In conformity with standard IEC 60044-8, defining voltage output current sensors
■ Usable for nominal currents of 25 A to 3150 A

- Class 0.5 over the range 100-4000 A
- The choice of sensor is solely based on the phase to phase distance of the cradle
ㅁ 120 mm diameter for phase to phase distances of 145 and 185 mm , - 200 mm diameter for phase to phase distances of 240 mm ,

■ Current sensors deliver a voltage output at a ratio of $100 \mathrm{~A} / 22.5 \mathrm{mV}$.

Operation

An input terminal is provided on the Sepam 1000^{+}for testing and maintenance purposes. A test cabinet interface can be ordered to check the correct operation of sensors.

Composition

The "racking in" function is provided by:

- The racking truck supporting the circuit breaker (mobile part).
- The cradle base (fixed part).

Operating procedure

■ The circuit breaker moves through 3 stable states: \square service: circuit breaker racked in and locked in place; low voltage connected, \square test: circuit breaker racked out and locked in place; low voltage connected, - extracted: the circuit breaker can be unlocked and extracted from the cubicle, with no interlocking.

3 stable states for manual operation

service position

test position

Comments: arrows indicate the "lock-in-positions" for the circuit breaker and the low voltage connector.

Functions

■ Interlocking between circuit breaker control and cradle position makes operation safer: racking in or out only when the circuit breaker is open.

- Interlocking is also provided between the low voltage connector and the circuit breaker.
Racking in is only possible when the low voltage connector is connected.
■ Earthing is automatically achieved throughout the whole racking in operation.
■ A fool prof protection enables cradle and circuit breaker to be matched up. This system is mounted on the racking base. Part of it has to be assembled by the panel builder on the cubicle floor.

Accessories

\square A set of auxiliary contacts:
$\square 4$ racked in/racked out position contacts,
$\square 1$ contact indicating that the cradle is locked in the racked in position.

- A propulsive system combined with a crank makes racking in and racking out easier. It allows the operation to be carried out with the door closed. Interlocking prevents to insert the crank until the racking base selector has been positioned to the "racked out" position.
- Additional earthing for the base can be provided by a copper brush.
- A key locking system (Ronis or Profalux) for the racked out position on the circuit breaker will provide increased safety when working downstream of the circuit breaker. This system is combined with an earthing disconnector (refer to page 66).

Support frame

Support frame

Function

Fixed installation

■ The support frame enables:

- a fixing support to be produced for the circuit breaker. Fixing to the ground is achieved using a roller kit. A drawing enables the interface to be produced between the rolling channel and the circuit breaker,
\square the "roller" function to be provided using the integrated rollers.

Withdrawable installation

- The support frame allows:
- a "cassette" type circuit beaker to be transformed into a "roller" type circuit breaker by adding an intermediary structure,
\square this structure to be positioned at a variable height according to the cubicle.

Circuit breaker equipped with an opening release

MITOP low energy release

Composition

The basic circuit breaker equipment includes a shunt trip release unit (MX).
■ It may also include the following options:

- a second MX release,
- or an under voltage shunt trip release (MN),
\square or an under voltage shunt trip release with time delay (MN + time delay unit), \square and a low energy release (MITOP).

Opening mechanism circuit diagram

Low energy release (MITOP)

This specific coil actuates the opening mechanism of the poles to trip the circuit breaker. It comprises a low energy consumption electromagnet.

Characteristics	direct current
supply	$0.6 \mathrm{~A}<\mathrm{I}<3 \mathrm{~A}$
threshold	11 ms
response time of the circuit breaker at Un	

Any tripping caused by the Mitop release is indicated momentarily by an SDE type changeover contact. This Release Unit also includes a coil enabling the remote rearming of the SDE contact.

Comment

To use the MITOP release requires the adjustment of a time delay to be set by the protection relay in order to ensure a circuit breaker operating time of 45-50ms.

MX shunt trip release

Undervoltage shunt trip release (MN)

This release causes the instant opening of the circuit breaker when its supply voltage drops below a value of between 35 and 70% of its rated voltage. If the release is not energised, closing the circuit breaker (manually or electrically) is impossible. Any attempt to close causes no movement of the main contacts. Closing is authorised when the supply voltage of the release reaches 85% of its rated voltage.

Characteristics						
supply	V AC $50 / 60 \mathrm{~Hz}$	$24 / 30$	$48 / 60$	$100 / 130$	$200 / 250$	
	VDC	$24 / 30$	$48 / 60$	$100 / 130$	$200 / 250$	
threshold	opening closing	$\underline{0.35 \text { to } 0.7 \mathrm{Un}}$				
0.85 Un						
consumption (VA or W)	20					
response time of the circuit breaker at Un	$90 \mathrm{~ms} \pm 5$					

Time delay unit for MN

To eliminate spurious tripping of the circuit breaker during momentary voltage drops MN's action is time-delayed. This function is achieved by adding an external time delay to the MN release circuit (delay is ajustable).
This unit is placed outside of the circuit breaker and can be inhibited by an emergency stop button to obtain instant opening.

Shunt trip release (MX)

This causes instant opening of the circuit breaker when energised.
Permanent energising of the MX locks the circuit breaker in the "open" position.

Characteristics					
supply	V CA $50 / 60 \mathrm{~Hz}$	24/30	48/60	100/130	200/250
	V CC	24/30	48/60	100/130	200/250
threshold		0.7 to			
consumption (VA or W)		pickup			
		latched			
response time of the circuit breaker at Un		50 ms			

Accessories

Circuit breaker equipped with remote control

Function

- The remote control enables remote opening and closing of the circuit breaker. \square In the case of continuous opening and closing orders, the remote control unit blocks the device in the open position as standard: the anti-pumping function. This function gives absolute priority to the opening order, but and also it stops closing and thus avoids the device being locked in an indefinite opening-closing cycle:
\square the opening and closing coils may be fed power on a constant basis to achieve an electrical type locking: there is no self-breaking contact inside the device, \square the interlocking between the opening and closing orders, whatever their causes, is achieved as standard within the device's control mechanism.

Remote control circuit diagram

Composition

\square The remote control comprises:

- charging motor and associated mechanism (MCH) equipped with a "springloaded" limit switch (CH)
\square two shunt trip releases:
- a closing release (XF)
- an opening release (MX).
- It can be added to by:
- a "ready to close" contact PF,
- a second block of 4 contacts for indication of the O/C position of the device.

Shunt trip release $X F / M X$

Charging motor and associated mechanism (MCH)

The MCH unit arms and rearms the energy storage springs as soon as the circuit breaker is closed. This enables instant reclosing of the device after opening. The arming lever is only used as back up control in the absence of an auxiliary voltage.
The MCH is equipped as standard with a CH limit switch. This contact indicates the "armed" position of the mechanism (spring armed).

Characteristics				
supply V AC 50/60 Hz		48/60	100/130	200/240
V DC	24/30	48/60	100/125	200/250
threshold	0.85 to 1.1 Un			
consumption (VA or W)	180			
motor overcurrent	2 to 3 In during 0.1 s			
arming tim	6 s . max.			
switching rate	3 cycles per minute max.			
mechanical endurance	10000 remote controlled opening operations for Evolis P1 and P2			
	5000 remote controlled opening operations for Evolis P3			
CH contact	10 A at 240 V			

Shunt trip Release (XF) and (MX)

Closing release (XF)

This causes the remote closing of the circuit breaker when the control mechanism is armed.
Opening release (MX)
This causes the instant opening of the circuit breaker when energised and can be permanently energised or temporarily energised.

XF characteristics					
supply	V AC $50 / 60 \mathrm{~Hz}$	24/30	48/60	100/300	200/250
	V DC	24/30	48/60	100/130	200/250
threshold		0.85 to 1.1 Un			
consumption (VA or W)		pickup: 200			
		latched: 4.5			
response time of circuit breaker at Un		$70 \mathrm{~ms} \pm 10$ for Evolis P1 and P2			
		$80 \mathrm{~ms} \pm 10$ for Evolis P3			

MX Characteristics					
supply	V CA 50/60 Hz	$24 / 30$	$48 / 60$	$100 / 300$	$200 / 250$
	V CC	$24 / 30$	$48 / 60$	$100 / 130$	$200 / 250$
threshold	0.7 to1.1 Un				
consumption (VA or W)	pickup: 200				
latched: 4.5					
response time of circuit breaker at Un	$50 \mathrm{~ms} \pm 10 \mathrm{~ms}$				

Operation counter

Rotary type O/C position contacts

Operation counter (CDM)

The operation counter is visible from the front face. It totalises the number of switching cycles that the device performs.

"Open/closed" position contacts (OF)

These contacts indicate the "open" or "closed" position of the circuit breaker. \square Rotary type change over contacts directly driven by the circuit breaker mechanism.

- Indicator contacts proposed
\square in standard version for a relaying application,
\square in low level version for control of plc's or electronic circuits. This version is compatible with the Sepam 1000^{+}unit.

Characteristics delivered as standard	3			
maximum quantity	11			
breaking capacity (A)	standard		min. lo	A/24 V
$\cos \varnothing$: 0.3	V AC	240/380	6	10/6
AC12/DC12		480	6	10/6
		690	6	6
	V DC	24/48	2.5	10/6
		125	0.5	10/6
		250	0.3	3
	low level		min. load: $1 \mathrm{~mA} / 4 \mathrm{~V}$	
	V AC	24/48		
		240	5	10/6
		380	5	3
	V DC	24/48	5/2.5	10/6
		125	0.5	10/6
		250	0.3	3

"Ready to close" contact (PF)
■ The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a changeover contact PF.
\square This information simultaneously indicates that:
a the circuit breaker is open,
\square the stored energy springs are armed, \square there is no permanent closing order, \square there is no permanent opening order:

- safety opening order (2nd MX or MN)
- device locked in the open position with a key lock.

Characteristics

delivered as standard max. quantity	0		
			1
breaking capacity (A)	standard		minimum load: $10 \mathrm{~mA} / 24 \mathrm{~V}$
$\cos \varphi$: 0.3	V AC	240/380	5
AC12/DC12		480	5
		690	3
	V DC	24/48	3
		125	0.3
		250	0.15

Padlocking in the circuit breaker "open" position

Key locking in the circuit breaker "open" position

Push button disabling

This transparent screen prevents access to the circuit breaker opening and closing push buttons.
The device enables independent locking of the opening or closing button, it is often associated with an electrical motor (MCH).

- Locking is achieved either by:

ㅁ 2 screws,
$\square 3$ padlocks, not supplied,

- sealing.

Sealing

Locking of the circuit breaker in the "open" position

■ The circuit breaker is locked in the "open" position by blocking the opening push button in the "pushed-in position":

- using padlocks: 1 to 3 padlocks not supplied,

口using key locks: 1 or 2 different key locks supplied.

- The key locks are of Profalux or Ronis type captive key, that becomes free once locked, and are offered according to the options, either: - 1 single key lock,
$\square 1$ single key lock mounted on the device +1 identical one delivered, separately for interlocking with another device,
ㅁ 2 different key locks for double locking.
■ Profalux and Ronis key locks are inter-compatible.

Circuit breakers:
7P1-1250
17 P1-630
17 P1-1250

Circuit breakers:
7 P1-1250
7 P2-1250
17 P1-630
17 P1-1250
17 P2-630
17 P2-1250

Circuit breakers:

7 P2-2500
7 P3-2500
17 P1-2500
17 P2-2500
17 P3-1250
17 P3-2500

Circuit breakers:

7 P1-1250
17 P1-630
17 P1-1250
17 P1-1600

Circuit breakers:

7P1-1250
7 P2-1250
17 P1-630
17 P1-1250
17 P1-1600
17 P2-630
17 P2-1250
17 P2-1600

Circuit breakers:

7 P2-2500
7 P3-2500
17 P1-2500
17 P2-2500
17 P3-1250
17 P3-2500

$$
8
$$

Protection, monitoring control and metering

Presentation 44
An integrated protection chain 44
Sepam 1000+ 46
Sepam Unit 46
Protection and metering 47
Sensors 50
Monitoring and control 51
Communication 52
Software 53
PowerLogic 54
Metering device 54
Dimensions 55
Sepam 1000+ 55

The Sepam 1000^{+}protection unit combined with innovative current sensors, provides a full chain for metering, protection, monitoring and control.

■ A high performance and economical solution

- Sepam 1000^{+}, due to its modular offer, provides a cost-effective solution adapted to every requirement,
ㅁ one single reference of sensors covers a large range of currents, from 100 to 3150 A .

■ Easy to order and install

- all the components of the protection chain are referenced and deliverable very rapidly,
\square the current sensors, developed in the circuit breaker environment are simply mounted onto the bushings,
- the functioning of the protection chain integrated in the Evolis circuit breaker has been fully tested and certified.

■The power of a multi-functional digital unit

Sepam 1000^{+}is not a simple protection relay, it is a multi-functional unit notably providing:

- circuit breaker diagnosis functions (number of switching operations, operating time, charging time, cumulative breaking current), - direct circuit breaker control whatever type of release,
\square remote operation of the equipment through the Modbus communication option.

Sepam $1000{ }^{+}$is a range of protection and metering units that is simple and reliable, intended to operate machines and electrical distribution networks in industrial installations and utility sub-stations.

More solutions

Sepam 1000^{+}provides solutions adapted to each application providing an optimum cost/function ratio.

- Protection of sub-station incomers and feeders
- Protection of transformers
- Protection of motors

■ Voltage protection for busbars.

More performances

Protections

■ Protection against phase-to-phase and phase-to-earth short-circuits, with logic discrimination management
■ Earth fault protection that is insensitive to transformer inrush current

- Detection of phase unbalance
- RMS thermal protection capable of taking account of ambient temperature and different ventilation configurations.

Communication

Fully compatible with the Modbus standard, it enables remote operation of equipment:
■ Reading of all available information (measurements, logical states, settings, etc)
■ Circuit breaker remote control.
Diagnosis
■ Network diagnosis: trip currents, unbalance ratio, disturbance recording, etc.
\square Circuit breaker diagnosis: number of switching operations, operating and charging time, cumulative A^{2} broken, etc.
■ Protection unit diagnosis: permanent self-testing, watchdog function, etc.

Monitoring and control

Circuit breaker control and indication logic programmed without auxiliary relays or additional cabling.

More modularity

■ Optional modules can be easily added at any time:

- logic inputs/outputs,
a communication,
\square temperature sensor module,
\square analog output module.

More simplicity

Easy cubicle installation

■ Compact base unit, depth of less than 100 mm .
a flush-mounted on the front panel,
\square or mounted inside the control compartment, the user-machine interface (UMI)
can then be placed in the best position for operation purposes.
■ Low power consumption limiting the size of auxiliary supply batteries.

User-friendly

■ All information is accessible on the advanced UM
■ Operator language of the advanced UMI can be customised
$■$ Direct setting of real values using manufacturer's data
■ Setting and operation software enabling the uploading and downloading of settings files amongst other things.

Unit with standard UMI

Unit with standard UMI and remote advanced UMI module

Unit with advanced UMI

With the "standard" UMI

■ This unit offers a cost-effective response for:
\square installations not requiring local operation (control from a remote control and monitoring system)
\square replacement of electromechanical or analogic electronic protection devices.
■ Its UMI only includes:
$\square 11$ signal lamps,

- 1 "reset" key to clear faults and to reset,
$\square 1$ connection port for the RS232 link with the PC.

Remote advanced UMI module (DSM 303)

■ Thinner and offering the functional features of the advanced UMI, it allows convenient installation on the front panel of the cubicle in the most effective position for operation.
\square This module is connected to Sepam 1000^{+}with standard UMI using a prefabricated 2 m (CCA 772) or 4 m (CCA 774) cable.

- A mounting plate is available to mount Sepam 1000^{+}with standard UMI at the back of the cubicle control compartment (AMT 840).

With the "advanced" UMI

This unit is an optimum response for local operation.
■ Its easy-to-read UMI includes:

- 11 signal lamps,
\square a "graphic" LCD display, enabling display of metering values, parameter settings and alarm and operation messages,
口a 9 key pad with 2 usage modes:
- white keys for current operation:
displaying measurements, diagnosis information and alarms
- blue keys for parameter and protection setting:
access to device parameters and protection settings. Modification protected by password
- 1 connection port for the RS232 link with the PC.

General characteristics

Supply voltage

Supply voltage		
		range
	48 to 250 VDC and 110 to 240 VAC	-20/+10\%
	24 VDC	-20/+50\%
Operating conditions according to IEC 60068		
	from $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Operating language		
	English/French	
	English/Spanish	
	English/Italian	
	English/Swedish	
	English/Polish	
	English/local language	

5 applications are available

Functions		Type of Sepam sub-station	transformer	motor	busbars	
Protection	ANSI Code	S20	T20	M20	B21	B22
phase overcurrent	50/51	\square	\square	\square		
earth fault (or neutral)	50N/51N	\square	\square	\square		
unbalance/negative sequence	46	\square	\square	\square		
thermal overload	49 RMS		\square	\square		
phase undercurrent	37			\square		
excessive starting time, locked rotor	48/51LR			\square		
starts per hour	66			\square		
undervoltage	27D/47				-	\square
remanent undervoltage	27R				■	\square
phase-to-phase undervoltage	27				-	-
phase-to-neutral undervoltage	275				\square	\square
phase to phase overvoltage	59				-	\square
neutral voltage displacement	59N				-	-
overfrequency	81H				\square	\square
underfrequency	81L				-	\square
rate of change of frequency	81R					-
recloser (4 cycles)	79	\square				
thermostat / Buchholz			\square			
temperature monitoring ${ }^{(2)}$	38/49T		\square	\square		
Metering						
phase current I1, I2, I3 RMS		\square	\square	\square		
residual current lo		\square	\square	\square		
average current I1, I2, I3		\square	\square	\square		
peak demand phase current IM1, IM2, IM3		\square	\square	\square		
phase-to-phase voltage U21, U32, U13					\square	\square
phase-to-neutral voltage V1, V2, V3					-	-
residual voltage Vo					■	\square
positive sequence voltage rotation direction					\square	\square
frequency					-	-
temperature measurement ${ }^{(2)}$			\square	\square		
Network diagnosis						
tripping current I1, I2, I3, Io		\square	\square	\square		
unbalance ratio / negative sequence current		\square	\square	\square		
running hours counter			\square	\square		
thermal capacity used			\square	\square		
remaining operating time before overload tripping			■	-		
waiting time after overload tripping			■	■		
starting current and time				\square		
start inhibit time delay, number of starts before inhibition				-		
disturbance recording		■	-	■	■	-
Switchgear diagnosis						
cumulative breaking square current		\square	\square	\square		
trip circuit supervision		\square	\square	\square	\square	\square
number of operations		\square	\square	\square		
operating time		\square	\square	\square		
charging time		\square	\square	\square		
Self-diagnosis						
watchdog		\square	\square	\square	\square	\square
output relay test ${ }^{(3)}$		\square	\square	\square	\square	\square
Control and monitoring						
circuit breaker / contactor control		\square	\square	\square	\square	\square
logic discrimination		\square	\square	\square		
4 addressable logical outputs		■	\square	\square	-	-
Additional modules						
8 temperature sensor inputs			\square	\square		
1 low-level analog output		\square	\square	\square	\square	\square
4 inputs/4 outputs or 10 inputs/4 outputs		\square	\square	\square	\square	\square
RS485 communication interface		\square	\square	\square	\square	\square

- basic,
- according to parameter settings and input/output module options
${ }^{(2)}$ with temperature sensor inputs option,
${ }^{(3)}$ with advanced UMI option.

Metering

- Display of operational measurements on the UMI display.
- This information can be obtained remotely:
aby adding the analog output MSA 141 together with the factory-built cables
\square by adding the communication function.

Analog output

Temperature sensor input

Protection

Phase overcurrent (ANSI 50/51)
4 three-phase protection functions against phase-to-phase short circuits, set independently.

- Adjustable timer hold, for detection of restriking faults.
- Switching function between 2 sets of settings.

Earth fault (ANSI 50N/51N or 50G/51G)
4 protection functions against earth faults, set independently

- Adjustable timer hold, for detection of restriking faults.
- $2^{\text {nd }}$ harmonic restraint, for stability on transformer energizing.
- Switching function between 2 sets of settings.

Unbalance / negative sequence (ANSI 46)
Protection against phase unbalance.
Thermal overload (ANSI 49)

- 2 protection functions against thermal damage due to an overload, to take account of:
- changes in ventilation mode of transformers,
\square the thermal withstand of motors with locked rotor.
- The calculation of equipment heat rise takes account of:
\square RMS value of currents,
\square negative sequence current,
\square ambient temperature,
\square heating and cooling curves.
- Each function includes 2 thresholds:
- 1 adjustable threshold for tripping,
- 1 adjustable threshold for alarm

Phase undercurrent (ANSI 37)
Protection of pump motors against working with no load, pump not primed.
Excessive starting time / locked rotor (ANSI 48/51LR)

- Control of the duration of motor starting.
- Detection of locked rotor in steady state.

Start per hour (ANSI 66)

Inhibition of motor starting in the case of too frequent starts, to avoid temperature rise.
Recloser (ANSI 79)
Automatic control to reclose a circuit breaker after tripping on a spurious fault on a line (4 reclosing cycles can be set).

Thermostat, Buchholz

Protection of transformers against internal faults detected by integrated devices.

Temperature monitoring (ANSI 38/49T)

Protection of transformers and motors equipped with temperature sensors. 1 alarm threshold and 1 tripping threshold on each of 8 temperatures measured by sensors.

- This protection requires the 8 temperature sensor inputs MET 148 module
- The module is connected to the Sepam unit by a cable of length $0.6 \mathrm{~m}, 2 \mathrm{~m}$, or 4 m (CCA 770 - CCA 772 - CCA 774).
Overvoltage (ANSI 59) and Undervoltage (ANSI 27)
2 protection functions against variations in phase-to-phase voltage, to monitor quality of power supply. Can be used for automatic functions (transfer, load shedding).
Phase-to-neutal undervoltage (ANSI 27S)
Detection of the phase concerned by an earth fault on an isolated network.

Positive sequence undervoltage (ANSI 27D/47)

■ Protection of motors against incorrect operation due to insufficient or unbalanced voltage.

- Detection of phase rotation.

Remanent undervoltage (ANSI 27R)

Control of the disappearance of remanent voltage provided by rotating machine after circuit opening.

Neutral voltage displacement (ANSI 59N)

2 protection functions against earth faults on isolated network, by measurement of neutral voltage displacement.

Overfrequency (ANSI 81H) and underfrequency (ANSI 81L)

Detection of variances with respect to the rated frequency, to monitor the quality of supply.
Rate of change of frequency (ANSI 81R)
Detection of loss of mains by calculation of the frequency variation speed Used in substations with generator that can be run in parallel with the mains.

Setting ranges

Functions	Settings		Time delay	
Phase overcurrent ${ }^{(1)}$				
rated current (In)	1 A to 6250 A			
curve	DT and 16 IDMT curves (IEC, IEEE, IAC)			
definite time	0.3 to 24 In		Inst; 0.05 s to 300 s	
IDMT	0.3 to 2.4 ln		0.1 s to 12.5 s at 10 ls	
Earth fault ${ }^{(1)}$	type of sensor			
rated current (Ino)	1 A to 6250 A			
curve	DT and 16 IDMT curves (IEC, IEEE, IAC)			
definite time	0.1 to 15 lno	$\Sigma 31 \mathrm{ph}$	Inst; 0.05 s at 300 s	
	0.2 to 30 A	CSH 120/200 2 A rating		
	2 to 300 A	CSH 120/200 20 A rating		
	0.1 to 15 Ino	CT 1 A/ 5 A with CSH 30 or core balance CT ${ }^{(2)}$		
IDMT	0.1 to 1 Ino	$\Sigma 31 \mathrm{ph}$	0.1 s to 12.5 s at 10 Iso	
	0.2 to 2 A	CSH 120/200 2 A rating		
	2 to 20 A	CSH 120/200 20 A rating		
	0.1 to 1 Ino	CT 1 A/ 5 A with CSH 30 or core balance CT ${ }^{(2)}$		
Unbalance/Negative sequence				
definite time	0.1 to 5 lb		0.1 s to 300 s	
IDMT	0.1 to 0.5 lb		0.1 s to 1 s	
Thermal overload			rate 1	rate 2
	negative sequence factor	0-2.25-4.5-9		
	time constant	heat rise	T1:5 to 120 min	T1:5 to 120 min
		cooling	T2: 5 to 600 min	T2: 5 to 600 min
	alarm; tripping	50 to 300% of rated thermal capacity used		
	cold curve change factor	0 to 100\%		
	rate change condition	by Is setting 0.25 to 8 lb (motor)		
		by logic input 126 (transformer)		
	max. equipment temperature	60 to $200^{\circ} \mathrm{C}$		
Phase undercurrent				
	0.15 to 1 lb		0.05 s to 300 s	
Excessive starting time / locked rotor				
	0.5 lb to 5 lb	ST start time LT time delay	$\begin{aligned} & 0.5 \mathrm{~s} \text { to } 300 \mathrm{~s} \\ & 0.05 \mathrm{~s} \text { to } 300 \mathrm{~s} \end{aligned}$	
Starts per hour				
	1 to 60 starts per period	period		
	1 to 60 successive starts	T time delay between starts	1 to 90 min	
Temperature (sensors)				
2 thresholds / sensor	0 to $180^{\circ} \mathrm{C}$ (or 32 to $356^{\circ} \mathrm{F}$)			
Phase-to-phase overvoltage				
2 thresholds	50 to 150\% Unp		0.05 s to 300 s	
Phase-to-phase undervoltage				
2 thresholds	5 to 100\% Unp		0.05 s to 300 s	
Phase-to-neutral undervoltage				
1 threshold	5 to 100\% Vnp		0.05 s to 300 s	
Positive sequence undervoltage				
2 thresholds	30 to 100\% Vnp (Unp/ $\sqrt{3}$)		0.05 s to 300 s	
Remanent undervoltage				
1 threshold	5 to 100\% Unp		0.05 s to 300 s	
Neutral voltage displacement				
1 threshold	2 to 80\% Unp		0.05 s to 300 s	
Overfrequency				
1 threshold	50 to 53 Hz or 60 to 63 Hz		0 s to 300 s	
Underfrequency				
2 thresholds	45 to 50 Hz or 55 to 60 Hz		0 s to 300 s	
Rate of change of frequency				
1 threshold	0.1 to $10 \mathrm{~Hz} / \mathrm{s}$		Inst; 0.15 s to 30	

Reminder:

The current In, the rated voltage Unp and the current Ino are general settings that are set when commissioning Sepam 1000+.
They are expressed in terms of values at the primary of metering transformers.
In is the rated current of current sensors (CT rating) (adjustable from 1 A to 6250 A),
Unp is the rated phase to phase voltage of the voltage sensor primary (adjustable from 220 V to 250 kV).
Ino is the rating of the residual current sensors.
$\mathbf{l b}$ is the current corresponding to the equipment's rated power, adjustable from 0.4 to 1.3 In .
The setting of current, voltage and frequency values is carried out by directly inputting the value; (resolution: $1 \mathrm{~A}, 1 \mathrm{~V}, 0.1 \mathrm{hz}, 1^{\circ} \mathrm{C}$ or F).
${ }^{(1)}$ adjustable timerhold DT or IDMT, according to tripping curve.
${ }^{(2)}$ with adapter core balance CT ACE 990 for core balance CT with a ratio of n between 50 and 1500 turns.

2 types of sensors are specially designed for Sepam 1000^{+}and Evolis: innovative and economical low power current transducers to measure phase currents, and zero sequence core balance CT's to measure residual current.

Low power current sensors

Zero sequence core balance CT's

Low power current sensors

Function

These low power sensors provide accurate current measurement to the protection function when the Evolis circuit breaker is associated with Sepam 1000^{+}.

Composition

Each sensor is delivered with 5 m of cable and a connector that allows direct connection to the CCA670 connector on the Sepam unit.

Mechanical characteristics

- Mounted directly on the Evolis withdrawable circuit breaker cradle.

The sensors are simply located on the bushings and fixed using a screw.
Each sensor covers the full operating range of the corresponding circuit breaker.

- Connection to Sepam 1000^{+}is achieved using an armoured cable which is attached to each sensor.

Electrical characteristics

■ In conformity with IEC standard 60044-8, defining voltage output current sensors

- Usable for nominal currents of 100 A to 3150 A
- Class 0.5
- The choice of sensor is based solely on the phase-to-phase distance of the cradle:
- diameter 120 mm CVv120 for phase-to-phase distances of 145 and 185 mm , - diameter 200 mm CVv200 for phase-to-phase distance of 240 mm .
- Current sensors are voltage output measurement adapters with a ratio of $100 \mathrm{~A} / 22.5 \mathrm{mV}$.

Operation

An input terminal is available on the Sepam 1000^{+}unit for testing and maintenance operations. An injection adaptor (ACE 917) can be ordered to check the correct operation of protection functions with a standard injection box.

Zero sequence core balance CT's

These enable direct measurement of residual current.

Electrical characteristics

- Maximum permissible current: $20 \mathrm{kA} / 1 \mathrm{~s}$
- Transformation ratio: 1/470
- Accuracy: $\pm 5 \% 020^{\circ} \mathrm{C}$
- Rating of 2 A input: adjustable threshold from 0.2 A to 30 A
- Rating of 20 A input: adjustable threshold from 2 A to 300 A .

Mechanical characteristics

- Mounted on the Medium Voltage cables
- Several versions are available according to the internal diameter:
- 120 mm CSH 120,
- 200 mm CSH 200.
- An adapter is available to connect core balance CT's with ratios of between

50 and 1500 turns or current transformers to be supplied by the panel builder.

Other compatible sensors

- Sepam 1000^{+}S,T or M type also functions with 1 A/5 A current sensors to be provided by the panel builder.
Connection is carried out using a CCA 630 connector which can be unplugged when energised.
- Sepam 1000^{+}B type functions with voltage transformers (primary voltage from 220 V to 250 kV), to be provided by the panel builder. Connection is carried out using a CCT 640 connector which can be unplugged when energised.

Additional input/output module

Composition

- The basic Sepam 1000^{+}unit has 4 relay outputs.

■ The extension of input/output resources for Sepam 1000^{+}uses an additional module, available in 2 versions:
$\square 4$ logic inputs/4 relay outputs: MES 108,
$\square 10$ logic inputs/4 relay outputs: MES 114.
This module is installed on the rear panel of the basic unit.

Functions

The availability of the following functions depends on the type of Sepam 1000^{+}unit and on its logic input/output resources.

Circuit breaker control

■ Opening, closing and inhibit closing (ANSI 69) of circuit breaker equipped with undervoltage release coil or shunt trip coil according to information:
\square from the protection functions and the recloser,
\square from remote control system,
\square from switchgear diagnosis functions.

Logic discrimination (SSL) (ANSI 68)

Quick and selective tripping of phase overcurrent protection and earth fault protection by logical blocking of the upstream protection by the downstream protection.
A safeguard device ensures the functioning of the protection device in the case of failure of the blocking link.

Latching / acknowledgement (ANSI 86)

Latching of output relays can be set. The latched closing orders are stored in memory and must be acknowledged before the device is put back in service.

Annunciation (ANSI 30)

- Alarms are detected and indicated:
aby lights on the front panel,
aby messages on the display,
\square by relay outputs according to parameter settings, \square remotely by the communication interface.

Watchdog

Output relay testing

Characteristics

Logic inputs

- Independent inputs, free of voltage.
- DC input voltage: 24 to 250 Vdc .

■ Consumption: 3 mA typically.

Relay outputs

■ AC or DC voltage: 24 to 220 Vdc and 100 Vac at 240 Vac .
$\square 3$ control outputs: continuous rating 8 A .
■ 5 indication outputs: continuous rating 2 A .

Function

Via the remote control and monitoring system, this allows the remote operation of equipment, with a Modbus protocol.

Remote monitoring by reading data

- Metering
- Value of protection settings
- Status of protections and Sepam 1000^{+}functions
- Status of logic inputs
- Time tagged events
- Disturbance recordings.

Remote control

- Opening and closing of the switchgear from the supervisor workstation
- Activating of Sepam 1000^{+}functions
- Two modes are available:
- "direct" or,
- "select before operate".

Remote setting of protections

Characteristics

Type of transmission	asynchronous serial
Protocol	Modbus slave
Rate	$4800,9600,19200,38400$ bauds
Electrical interface	2-wire or 4-wire differential, standard EIA RS 485
Maximum distance	250 m
Number of bus supplied Sepam units on one line	25
Number of masters	1
Response time	less than 15 ms

Setting up the Modbus network

- Sepam 1000^{+}is connected to the communication network via a communication interface:
\square ACE 949-2, for connection to a RS 485 2-wire bus,
- ACE 959, for connection to a RS 4854 -wire bus.

The 3 m long prefabicated cable (CCA612) necessary to connect the remote communication interface to the Sepam base unit is included.
A 12 Vdc or 24 Vdc power supply is required to supply the communication interfaces.

- RS 485 2-wire converters are available for signal conversion, line polarization and 12 Vdc supply of the Sepam communication interfaces:
- ACE 909-2, RS 485 / RS 232 converter,
- ACE 919, RS 485 / RS 485 converter.
- Cabling between these elements must be provided with a shielded cable which is not supplied.

[^2]

SFT 2841 :
phase overcurrent protection setting screen

Expert User Machine Interface Software

The SFT2841 software gives access to all Sepam 1000^{+}functions, with all the user friendliness and comfort offered by a Windows type environment.

Operation

■ 2 modes are available:
a not connected to Sepam 1000^{+}for initial preparation of parameters and protection settings,
a connected to Sepam 1000^{+}, to get optimum use of its resources and have all the functions available in disconnected mode and additional local operation functions.

Parameter and protection settings

The creation of files containing all parameters and protection settings for Sepam 1000^{+}is possible without being connected to the unit.

■ Amongst other things the software enables:
\square the full setting of Sepam 1000^{+}and adjustment of protection functions, \square customising of the control logic,

- customising of identification labels for signal lamps,
\square management of parameters and settings files: saving, comparison, printing.

Local operation

■ Connected to Sepam 1000^{+}, the software enables access to the following information:

- all metering and diagnosis values,
\square parameters and protection settings,
- past history of alarms with time of occurrence,
a logical states of inputs, outputs and signal lamps.
- And the following operations:
\square uploading and downloading of parameters and settings files, \square recovery and saving of disturbance recordings,
\square acknowledgement of active alarms and resetting of Sepam 1000^{+} after tripping.

Disturbance records display software

The SFT 2826 software allows display, analysis and printing of disturbance records made by Sepam units.

Implementation

■ Required configuration:

- Microsoft Windows 95/98/NT4.0,
\square PC compatible computer with Pentium 133 MHz processor or greater,
$\square 32 \mathrm{Mb}$ of RAM and 4 Mb on hard disk.
\square Available in kit form comprising:

$\square 1$ CD-ROM including:

- The SFT 2841 expert UMI software,
- The SFT 2826 disturbance records display software,
- 1 RS232 PC / Sepam 1000^{+}connection cord.

The Power Meter can replace analogue metering devices.
It calculates electrical magnitudes: average values, harmonic distortion rates, etc. The information it provides allows a reduction in both energy and maintenance costs. It can be integrated in the "PowerLogic system".

The optional Power Meter display takes the same space as a conventional analogue metering device and can be connected to the Power Meter module using a communications cable.

Function

In addition to its metering functions, the Power Meter range has advanced functions such as:

- Power quality

Harmonic distortion level in both current and voltage terms.

- Memorisation of minimum and maximum values

Used for define preventive maintenance.

- Alarm/relay functions

The PM-650 has on-board alarms. These alarms are triggered when a voltage, current, frequency and phase threshold is exceeded. Moreover, they can also trigger a relay.

- Event logging

When an alarm appears, the event is logged into the memory (non volatile).
These events are called up on the PC screen.

- Data recording

This data is saved to the local memory and can then be read on a PC. The user can select the metering data acquisition frequency.

Characteristics

Economical metering

■ One single device replaces a large number of analogue metering instruments.

- Class 0.2 accuracy for voltage current metering acquisition.
- Accuracy of RMS values for metering of voltage and current harmonic distortion up to the 31st harmonic.
- Harmonic distortion rate reading for voltage and current in each phase to give an indication as a percentage of the quality of the waveform.
■ Neutral current monitoring to detect overloading.
■ High speed sampling to monitor, for example current demand peaks.
- Load monitoring for preventive maintenance.
- Reallocation of energy costs.
- Remote input of data provided by the devices through the RS-485
communication port and a PC.

Easy installation

■ It is possible to separate the metering device and the optional screen for very flexible installation.

- Easy to incorporate in the energy management system.
- Compact dimensions 114×114.

Standard sensors

- Connection to conventional CT's.

■ Does not require PT up to 600 V .
Communication options
■ Modbus communication.

- Power impulse output.

Two-line LCD screen
■ Back to back or next to the central device, connected using a cable of maximum length 15 metres.
■ Possible to use as a portable setting tool for Power Meter.
■ Simultaneous display of phase 1.2.3. measurements.
Conformity with standards

- Conformity with standards UL. NOM. and CSA
- CE marking
- Tested according to standard IEC 1000
- In conformity with FCC (class A)
- Vibration and temperature tests.

Additional function

- Other multi-functional metering devices in the Power Logic range propose among others:
- magnitudes and angles of the 31 harmonics, \square detection and recording of voltage and current peaks, \square wave form capture...

Sepam unit with connectors and additional inputs/outputs module

8 temperature sensor inputs

CSH120/CSH200

dimensions (mm)	A	B	D	E
CSH 120	120	164	44	190
CSH 200	200	256	46	274

Earthing 58
Indication and interlocking 59

Operating mechanism

Power circuit unit

Function

This device is used to earth and short circuit the cable ends before work is performed on the cable compartment.

Composition

- The earthing switch includes:
- an operating mechanism box to be mounted on the front face of the cubicle, - a power circuit unit with a fast acting closing mechanism independent of the operator.

■ The link between the 2 devices will have a length depending of the depth of the cubicle. A drawing will define this rod to be manufactured and installed by the panel builder.

- Mechanical interlock with the circuit breaker to prevent:
\square to draw in the circuit breaker if the earthing switch is closed,
\square to close the earthing switch if the circuit breaker is not opened and drawn out, \square this interlock is realised with Profalux or Ronis key,
- a drawing is showing the mechanical link to be manufactured and installed by the panel builder.
- Mechanical interlock with the front and rear plate of the cable compartment to prevent access to the cables under voltage:
\square a drawing is showing the mechanical link to be manufactured and installed by the panel builder.

Characteristics according to IEC 60129

$\mathbf{U r}$	kV	12	17.5	17.5
$\mathbf{l k}$ for $\mathbf{t k}=\mathbf{1 ~ s}$	kA		50	50
$\mathbf{l \mathbf { k } \text { for } \mathbf { t k } = \mathbf { 3 } \mathbf { ~ s }}$	kA	31.5	31.5	31.5
phase distance	mm	160	200	240
rated short circuit making current	2.5 lk	2.5 lk	2.5 lk	

Voltage Presence Indicator unit

Key locking

Operating lever

Voltage Presence Indicator System

■ This system combined with the Iso-capacitors integrated as standard in the earthing system provides an indication of the voltage in the phases of the main circuit.

- It is mounted on the front of the earthing operating mechanism.

■ It is available for two voltage ranges, in conformity with standard IEC 61958 :

- 3.2 to 7.2 kV
$\square 7.2$ to 17.5 kV .

Open/closed contacts

A series of 6 auxiliary contacts indicates the open/closed position of the earthing switch.

Characteristics delivered as standard		4	
maximum quantity	V AC	11	
breaking capacity (A)		240	15
$\cos \varnothing: 0.3$	$\frac{380}{}$	10	
		480	10
		600	6

Mechanical earthing switch locking

This function enables the earthing switch to be locked in its open or closed position by adding 1 or 2 key locks.
\square Several configurations are available:

- locked closed by 1 key lock + locked open by 1 key lock, - locked closed by 2 key locks,

口 locked open by 2 key locks.
A mechanical adaptation kit is delivered to fit the various key locks which are not supplied.

Electromechanical interlocking of the earthing switch

This function is achieved using a coil which blocks switching operation when it is not supplied power. When energised it releases the earthing switch which can then be closed.
The system is available in several versions according to the supply voltage:
24 VDC - 48 VDC - 110 VDC - 220 VDC.

Earthing switch operating lever

This is identical to the one supplied for the circuit breaker racking truck. It allows the earthing switch to be operated.

Switchboard components 62
Panorama 62
Operation 63
Cubicle components 65
Indication, support, heating 65
Protection 66

Switchboard components

Fixed coupling link

Drawout coupling link

Busbar earthing truck

Fixed coupling link

Allows a standard incomer/feeder cubicle to be transformed into a busbar riser cubicle by short circuiting the top and bottom terminals of the cradle.
\square This offer is exclusively available in the form of drawings proposed in the installation manual.
\square This unit comprises 1 bridge/phase and is easily installable by the operator on the cradle bushing fingers.

Electrical characteristics			
$\mathbf{I r}$	A	1250	2500
$\mathbf{I k}$	kA	31.5	40

Drawout coupling link

Enables bridging in an existing cubicle of the upstream and downstream circuit in the cubicle. It is installed in place of the withdrawable circuit breaker in the cradle.
\square It includes:
\square a device to lock in the racked-in position using padlocks.

- an auxiliary PAF contact delivered separately for installation on the cradle: it indicates that the truck is well mechanically racked in.

Electrical characteristics

$\mathbf{I k}$	kA	25	31.5	40
$\mathbf{t k}$	S	3	3	3
$\mathbf{l r}$	A	1250	1250	3150
phase distance	mm	145	185	240

Busbar earthing truck

This device is a safety accessory used in place of the withdrawable breaker in order to earth the busbars.

- Possibility of locking by padlocks in the draw-in position.

Electrical characteristics				
$\mathbf{U r}$	kV	17.5	17.5	17.5
$\mathbf{I} \mathbf{k}$	kA	25	31.5	40
$\mathbf{t \mathbf { k }}$	S	3	3	3
phase distance	mm	145	185	240

Extraction table

Operating handle

Extraction table

Enables the circuit breaker to be taken out of the cubicle and to handle it during maintenance operations or during cubicle manufacturing.
\square A height adjustment device using screw/bolts allows the height to be adjusted to $-20 \mathrm{~mm} /+200 \mathrm{~mm}$.

- A latching device is provided between the extraction table and the cradle.

Operating handle

This enables all operations to be carried out on the circuit breaker racking truck as well as on the earthing switch.

Busbar connection cover

This set of 3 insulating covers enables improved dielectric withstand at the busbar connections in the cubicle.

Capacitive divider insulator

Capacitive divider insulator set

■ This Voltage Presence Indicator System (VPIS) includes:
\square the insulators themselves providing mechanical support and insulation up to 17.5 kV ; these insulators also integrate capacitors capable of supplying a voltage potential signal,

- a voltage indication unit with light to indicate the voltage presence on the front panel covering 2 voltage ranges:
- 3.2 to 7.2 kV
- 7.2 to 17.5 kV

Support insulator

$■$ This enables mechanical support and voltage insulation at 12 and 17.5 kV

- Application for busbar and cable fixing and support.

Door handle

- Enables the front panel door of the cubicle to be closed.

Several versions are available:
\square with triangular key lock,
\square with Ronis or Profalux type key lock.

Heating element

\square This can be used for 2 reasons:

- heating the cubicle when the ambient temperature is too low, \square avoiding the formation of condensation.
$■$ Delivered with its support and without a thermostat.
- Power: 150 W at 220 V .

Surge arrestor

Surge arresters

Silicone rubber housed metal-oxide surge arresters are intended for over voltage protection of distribution networks: they offer ad-hoc protection against overvoltage from various origins (lighting, switching...).
The VARISIL range could be associated to the various voltage covered by Evolis circuit breakers.

- Our recommendation when using with Evolis:
$\square \mathrm{Ur}=7.2 \mathrm{kV}$: HD 09,
- Ur $=12 \mathrm{kV}$: HD 12,

口 Ur $=17.5 \mathrm{kV}: H D 18$,

Common characteristics according to IEC 60 099-4

rated discharge current	In (with $8 / 20$ wave)	(kA peak)	10
line discharge class		1	
short time withstand current, twice	(with 4/10 wave)	(kA peak)	100
rectangular withstand current, duration $2000 \mu \mathrm{~s}$		(A peak)(withstand 18 times min.) 300	
short circuit withstand	(kA RMS - for 0.2 s)	31.5	

Characteristics according to IEC 60 099-4											
			HD06	HD09	HD12	HD15	HD18	HD24	HD30	HD36	HD42
rated voltage	Ur	(kA RMS)	6	9	12	15	18	24	30	36	42
maximum continuous service voltage	Uc	(kV RMS)	5	8	10	12	15	20	24	28.8	33.6
rated residual voltage	In	(10 kA)	18	28	42	45	56	72	89	106	120
rated creepage distance		(mm)	380	380	380	380	610	610	910	910	910
mass - option "no"		(kg)	1.5	1.6	1.8	1.8	2.5	2.7	3.5	3.6	3.6

Control

In this chapter we propose an overview of our offer dedicated to low voltage
switchgear.
You can obtain all information required to place an order using the reference documentation.
AC/DC Protection circuit 70
Multi 9 circuit breaker 70
Control and indication 72
Harmony push button and indicator lights 72
Connection 74
Terminal blocks, junction blocks 74

3 poles

Function

Control and protection of circuits against overloads and short-circuits for AC and DC applications.

Description

Technical data

c Ratings: 6 to 63 A set at $30^{\circ} \mathrm{C}$.
c Voltage rating: 230/400 V AC and 48 V DC.
Electrical characteristics

Ratings (A)	Type	Voltage (V) AC	Break.Cap. (A)
6 to 63	1 P	$230 / 400$	3000 to 10000
	2.3	400	3000 to 10000
Ratings	Type	Voltage (A)	
(V) DC	Break.Cap.		
1 to 32	$1,2,3$	48	(A)

c Number of operating cycles (O-C): 20000.
c Tripping curves:
\checkmark B curve: the magnetic trip units operate between 3 and 5 In
v C curve: the magnetic trip units operate between 5 and 10 In .
c Tropicalisation: treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$).
c Connection: tunnel terminals for cables up to $25 \mathrm{~mm}^{2}$.

Electrical auxiliaries

The electrical auxiliaries enable the remote tripping or indication of the Multi 9 circuit-breakers:
c On the left of the circuit breaker for the indication auxiliaries.
c On the right of the circuit breaker for the trip units.

c Combining the auxiliaries

c Remote tripping of Multi 9 circuit breaker
This can be carried out with an MX shunt release or MN undervoltage release fixed on the right of the circuit breaker.

Remote indication

c OF auxiliary contact
Fixed on the left of the circuit breaker or another auxiliary contact, it enables the indication or control according to the "open" or "closed" position of the circuit breaker.
c SD fault indicating switch
Fixed on the left of the circuit-breaker, it enables the indication or control according to the "fault tripped" position of the circuit-breaker.
Visualisation of the fault on the front face by mechanical indicator.
c Connection: screw clamp terminals for:
$\mathrm{v} 2 \times 1.5 \mathrm{~mm}^{2}$ cables or $1 \times 2.5 \mathrm{~mm}^{2}$ cable.

Technical data of the auxiliaries

Voltage (V AC or DC)	Breaking Capacity $(\cos \boldsymbol{\varnothing}=\mathbf{0 . 6})$ $380-415 ~ V ~ A C ~$

Accessories

Padlocking facility

Enables the locking of the single or two-pole Multi 9 control toggle, in the "open" or "closed" position (by an 8 mm max. padlock, not supplied).

Single or double dividable mounting plate

Possibility to lock the mounting plate by an $8 \mathrm{~mm} \varnothing$ padlock (not supplied), with the circuit breaker in the isolated position.

Comb busbars

c Current permissible at $40^{\circ} \mathrm{C}$:
v 100 A with a central supply point,
v 125 A with two supply points.
c Rated insulation voltage: 500 V (according to IEC 664).
c Short-circuit withstand compatible with the Multi 9 breaking capacity.
c Connection:
v the supply is possible:

- by $16 \mathrm{~mm}^{2}$ semi-rigid cable directly in the device enclosure
- by $25 \mathrm{~mm}^{2}$ semi-rigid cable using the specific connector.

Terminal shields

c Degree of protection: IP 305.

Sealable terminal shield

Enables to install the entire multi 9 on a panel: terminal shield composed of a base with a symmetrical rail and a cover to be screwed (sealable combination).
Passage of the wiring by punched out openings on the sides and the base.

Applications

Mounting Hole

Modular product With metal collar chrome plated or black Rounded head

Digital displays
Profil front panels

Hextis

Non adaptable product Plastic collar Rounded head

$$
\varnothing 22 \text { and Ø } 25
$$

Push buttons
Emergency stop
buttons
Rotary buttons
Indicator lights

By captive screw terminals

$$
\begin{aligned}
& \text { Clip connector } \\
& 2.8 \times 0.5 \text { or } \\
& \text { screw connector }
\end{aligned}
$$

Displays to be made up:
body +1 digit head
3 sizes of front panel
for mounting of 4,8 or 12
control and

$$
\begin{aligned}
& \text { control and } \\
& \text { indication units } \varnothing 22
\end{aligned}
$$

By connector

IP 40
IP 65 (with seal)
IP 65

$$
\text { IP } 65
$$

ZA2-VA

KT。

Junction blocks

How to order - User Guide 78
Circuit breaker 79
Full version 79
Modular version 81
Fitted accessories 84
Protection, monitoring control and metering 86
Earthing switch 91
Switchboard components 93
Separate accessories 95

How to read the order forms

Case of mandatory combined products

1 Follow your needed path
2 Select only one bloc when blocs are adjacents

3 If necessary you can select this bloc as an option

Case of loose or separate accessories products

1 Select the blocs you wish
Specify for each the quantity requested

Mounted by Schneider Electric

Mounted by Panel Builder

Circuit breaker
 Order form Full version

Mounted by Schneider Electric

Mounted by Panel Builder

Order form
 modular version

Mounted by Schneider Electric

Mounted by Panel Builder

V^{*} : vertical, H^{*} : horizontal

Order form
modular version

Mounted by Schneider Electric

Mounted by Panel Builder
racking base

earthing sliding contact

References

Price Lead
Time p. 30 Low powered CTs for Sepam 1000^{+}

$$
\begin{array}{ll}
3 \text { CVV } 120 & 25-3150 \text { A } \\
3 \text { CVV } 200 & 25-3150 \text { A }
\end{array}
$$

p. 31 LV terminal blocks

p. 31 Type of racking

p. 31 Operating shaft
(1 per switchboard)

p. 31 Additional earthing device

59451 v
cradle

59300 v p. 31 Racking base

Circuit breaker
 Order form modular version

Mounted by Schneider Electric

Mounted by Panel Builder

p. 31 Adaptation kit in case of application

 with SE earthing switchsee drawings in the "installation guide"

Order form Fitted accessories

Mounted by Schneider Electric
Mounted by Panel Builder

page \& Function p. 34 MX opening shunt trip voltage

Price Lead
Time

$24 \ldots 30 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$48 \ldots 60 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$100 \ldots 130 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$200 \ldots 250 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$

p. 34 Additional MX opening shunt trip voltage

| $24 \ldots 30 \mathrm{~V}$ | DC $50 / 60 \mathrm{~Hz}$ |
| :--- | :--- | :--- |
| $48 \ldots 60 \mathrm{~V}$ | DC $50 / 60 \mathrm{~Hz}$ |
| $100 \ldots 130 \mathrm{~V}$ | DC $50 / 60 \mathrm{~Hz}$ |
| $200 \ldots 250 \mathrm{~V}$ | DC $50 / 60 \mathrm{~Hz}$ |

p. 34 MN undervoltage shunt trip voltage

| | DC $50 / 60 \mathrm{~Hz}$ |
| :--- | :--- | :--- |
| p. 34 Time delay unit for MN, MN time setting | |

p. 36 XF closing coil release

$24 \ldots 30 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$48 \ldots 60 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$100 \ldots 130 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$200 \ldots 250 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$

Circuit breaker

Order form

 Fitted accessories
Mounted by Schneider Electric

Mounted by Panel Builder

Protection, monitoring control and metering
Mounted by Schneider Electric
Mounted by Panel Builder

Protection, monitoring control and metering

Order form:
Sepam 1000+

Mounted by Schneider Electric
Mounted by Panel Builder

Protection, monitoring control and metering

Order form:

Sepam 1000+

Mounted by Schneider Electric

Mounted by Panel Builder

Protection, monitoring control and metering

Order form:

accessories Sepam 1000+

Mounted by Schneider Electric
Mounted by Panel Builder

Protection, monitoring control and metering

Order form:
accessories Sepam 1000+

Mounted by Schneider Electric

Mounted by Panel Builder

page \& Function	Designation	References	e

p. 52 Communication accessories

p. 53 Configuration software

PC configuration kit SFT28

Connectors

Earthing switch

Mounted by Schneider Electric

Mounted by Panel Builder

Order form:
earthing switch (ES) voltage presence indicator system (VPIS) d/o circuit breaker interlocking

Earthing switch

Mounted by Schneider Electric

Order form:

earthing switch (ES)
voltage presence indicator system (VPIS)
d/o circuit breaker interlocking

Mounted by Panel Builder

Order form:

switchboard components

Mounted by Schneider Electric

Mounted by Panel Builder

p. 63 Withdrawable coupling link: phase-distance, Ith, Ir

145 mm	25 kA	1250 A	
185 mm	31.5 kA	1250 A	59440 V
240 mm	40 kA	3150 A	$\mathbf{5 9 4 4 1} \mathrm{~V}$
$\mathbf{y y y y}$			

p. 63 Busbar earthing truck

p. 64 Operation shaft common to earthing switch \& CB racking
operating shaft 59449 v
p. 64 Busbar connection

Switchboard
components

Order form:
 switchboard components

Mounted by Schneider Electric
Mounted by Panel Builder

Phase comparator

phase comparator

59448 v

p. 65 Voltage indicator insulator

3 voltage insulators
59430 v
p. 65 Insulator support

3 standard insulators
59431 v
p. 65 Cubicle compartement handles

p. 65 Heating resistor

heating resistance
59280 v
jig for CB/cradle changeability \& wiring tool \& set for arm fixation

jig mandatory 59310 V
for each partner \& wiring tool \& fixation set

Mounted by Schneider Electric

Mounted by Panel Builder

page \& Function	Designation	References		Price	$\begin{aligned} & \text { Lead } \\ & \text { Time } \end{aligned}$
p. 24 Cradle, phase distance		for full $C B$ version			
	cradle / 145 mm		59292 v		
	cradle / 185 mm		59293 v		
	cradle / 240 mm		59294 v		

p. 30 Low powered CTs for Sepam 1000^{+}mounted on lower cradle bushings

p. 24 Draw in/out position signaling

$4 A C+1$ AC PAF
59170 v
p. 24 Additional earthing device

earthing sliding contact
59451 v
p. 32 CB footing

support
p. 28 Type of fixed connection (3 units), Ir to be mounted on basic CB or bushings

fixed distance H or V 630-1600 A	59400 v
variable distance H 630-1600 A	59401 v
variable distance V 630-1600 A	59402 v
fixed distance H or V 1250-2500 A	59403 v
variable distance H 1250-2500 A	59404 v
variable distance V 1250-2500 A	59405 v

Separate accessories
Order form:
separate accessories

Mounted by Schneider Electric

Mounted by Panel Builder

page \& Function	Designation	References	Price	Lead
p. 29 Type of withdr	ble connections	for modular 'CB		
	3 clusters/fingers 630-1250A	59369 v		
	3 clusters/fingers 1250-2500A	59371 v		
	3 bushings/arms\&clusters 630-1250A	59370 v		
1 cluster 1 finger	3 bushings/arms\&clusters 1250-2500 A	59372 V		
	3 arms 630-1250A	59396 v		
0	3 arms 1250-2500A	59397 v		
1 bushing 1 arm	3 bushings without fingers 630-1250A	59406 v		
	3 bushings without fingers 1250-2500A	59407 v		

p. 30 Low powered CTs for Sepam 1000+

3 CVV120	$25-3150 \mathrm{~A}$
3 CVV200	$25-3150 \mathrm{~A}$

59390 v
59391 v
p. 24 Additional earthing device

earthing sliding contact
59451 v
p. 31 Racking base

> racking base

59300 v
p. 31 Draw in/out position signaling

$4 A C+1$ AC PAF
59170 v
p. 32 CB footing

$$
\text { support } \quad \square \quad 59050 \mathrm{~V}
$$

Mounted by Schneider Electric

Mounted by Panel Builder

User manual
User manual 59077 v

Unit LV terminal block for drawout installation
1 drawout CB terminal block
47849 v

Unit LV terminal block for fixed installation
1 fixed CB terminal block
47074 v
p. 34 MX1, MX2, XF coil voltage

$24 \ldots 30 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$48 \ldots 60 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$100 \ldots 130 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$200 \ldots 250 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$

59141 v	
59142 V	
59143 V	
59144 V	

p. 34 MN undervoltage shunt trip voltage

$24 \ldots 30 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$48 \ldots 60 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$100 \ldots 130 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$200 \ldots 250 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$

33668 v
33669 v
33670 v
33671 v

\square	\square
\square	\square
	\square

p. 34 MN time setting (0.5-0.9-1.5-3s) voltage

$48 \ldots 60 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$100 \ldots 130 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$
$200 \ldots 250 \mathrm{~V}$	DC $50 / 60 \mathrm{~Hz}$

33680 v
33681 v
33682 v

\square	\square
\square	\square

p. 33 MITOP

Separate accessories
Order form:
separate accessories

Mounted by Schneider Electric

Mounted by Panel Builder

p. 37 Aditionnal auxiliary contacts

4 AC "sliver"
47887 V
p. 37 Indication of CB ready to close PF

p. 38 Open position CB interlocking

for lock \& key	48541 v	
for padlock supplied by client		48539 v

p. 38 RONIS lock \& key configuration
with one lock
with 2 idem locks
with 2 different locks

p. 38 PROFALUX lock \& key configuration

		42888
vith one lock		
with 2 idem locks	42878 v	
with 2 different locks	59342 v	

Mounted by Schneider Electric
Mounted by Panel Builder

page \& Function	Designation	References	Price	Lead Time
p. 39 Padlocking of O/C push button				
-60	for padlock supplied by client	48536 v		

3 MV connectors shield, Ir

630-1250 A	59435 V
2500 A	59436 v

Labels kit for Push Button \& indicator (O/C)

 this publicationPublished by: Schneider Electric SA

[^0]: N.B.:

 EN45001: general requirements for the competence of testing and calibration laboratories
 EN45011: general requirements for bodies operating product certification systems.

[^1]: Masterpact circuit breaker

[^2]: Network example

